Monoclonal antibodies (mAbs) are large size molecules that have demonstrated high therapeutic potential for the treatment of cancer or autoimmune diseases. Despite some excellent results, their intravenous administration results in high plasma concentration. This triggers off-target effects and sometimes poor targeted tissue distribution. To circumvent this issue, we investigated a local controlled-delivery approach using an in situ forming depot technology. Two clinically relevant mAbs, rituximab (RTX) and daratumumab (DARA), were formulated using an injectable technology based on biodegradable PEG-PLA copolymers. The stability and controlled release features of the formulations were investigated. HPLC and mass spectrometry revealed the preservation of the protein structure. In vitro binding of formulated antibodies to their target antigens and to their cellular FcγRIIIa natural killer cell receptor was fully maintained. Furthermore, encapsulated RTX was as efficient as classical intravenous RTX treatment to inhibit the in vivo tumor growth of malignant human B cells in immunodeficient NSG mice. Finally, the intra-articular administration of the formulated mAbs yielded a sustained local release associated with a lower plasma concentration compared to the intra-articular delivery of non-encapsulated mAbs. Our results demonstrate that the utilization of this polymeric technology is a reliable alternative for the local delivery of fully functional clinically relevant mAbs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2021.12.010 | DOI Listing |
Adv Healthc Mater
December 2024
Dept of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK.
Intra-articular glucocorticoid injections are effective in controlling inflammation and pain in arthritides but restricted by short duration of action and risk of joint degeneration. Controlled drug release using biocompatible hydrogels offers a unique solution, but limitations of in situ gelation restrict their application. Gellan sheared hydrogels (GSHs) retain the advantages of hydrogels, however their unique microstructures lend themselves to intra-articular application - capable of shear thinning under force but restructuring at rest to enhance residence.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou City 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopedic Trauma and Aging Diseases of Zhejiang Province, Zhejiang 310016, China. Electronic address:
Osteoarthritis (OA) is a chronic joint disease characterized by the progressive degradation of articular cartilage. Delivering functional genes to chondrocytes to modulate the inflammatory environment offers a promising approach to treating OA. However, the dense extracellular matrix (ECM) in the OA microenvironment and the rapid clearance of naked nucleic acids from synovial fluid present significant challenges.
View Article and Find Full Text PDFActa Pharm Sin B
November 2024
Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
Eur J Pharm Biopharm
December 2024
3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. Electronic address:
According to the World Health Organization (WHO), chronic inflammatory-related diseases represent the greatest threat to human health. Indeed, failure in the resolution of inflammation leads to serious pathological conditions, such as cardiovascular diseases, arthritis, cancer, diabetes, autoimmune diseases, and neurodegenerative disorders that are often associated with extremely high human suffering and societal and economic burdens. Despite the number and efficacy of available therapeutic agents have been increased, the serious side effects associated with some of them often create a very high risk/benefit ratio for patients.
View Article and Find Full Text PDFBMC Vet Res
December 2024
CIRALE, USC 957, BPLC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!