Transport of nanoparticulate TiO UV-filters through a saturated sand column at environmentally relevant concentrations.

Sci Total Environ

Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France.

Published: March 2022

The fate of sunscreen residues released during bathing activities around recreational areas is an emerging concern regarding the potential ecotoxicity of some of their ingredients, including nanoparticulate TiO UV-filters. To assess the extent of contamination in the natural medium, sand-packed column experiments were carried out with bare TiO engineered nanoparticles (ENPs) and two commercial nano-TiO UV-filters coated with either SiO (hydrophilic) or a combination of AlO and simethicone (amphiphilic). The high sensitivity of (single particle)ICPMS online monitoring of the breakthrough curves made it possible to inject the ENPs at trace levels (2-100 μg L) in eluents composed of 10 and 10 M NaCl and pHs of 5.7 and 7.8. The deposition of all ENPs in the sand increased with the ionic strength and decreased with the pH of the carrier. Both bare and SiO-coated ENPs showed a clear control by the electrostatic interactions between the particles and the quartz grains surfaces, in partial agreement with classical DLVO theory. Unexpectedly high rates of transfer were observed with the amphiphilic UV-filter, which could be explained by the addition of a contribution to the DLVO model to account for the steric repulsion between the sand collector and the polysiloxane surface layer of this ENP. These results demonstrate the major role played by the coating of UV-filters regarding their fate in porous media like soils, sediments and aquifers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.152408DOI Listing

Publication Analysis

Top Keywords

nanoparticulate tio
8
tio uv-filters
8
transport nanoparticulate
4
uv-filters
4
uv-filters saturated
4
saturated sand
4
sand column
4
column environmentally
4
environmentally relevant
4
relevant concentrations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!