Environmentally friendly lead-free piezoelectric materials have been attracting significant attention in recent years. NaBiTiO-based relaxor ferroelectrics have found acceptance for application in promising lead-free transducers in high-power ultrasonic devices. However, their low thermal stability, i.e., their relatively low ferroelectric-relaxor transition temperature (), hinders their practical application. Herein, a thermal-quenching approach is applied on a NaBiTiO (NBT)-based single crystal, which yields a large increase in and dramatic enhancement of its ferroelectric ordering, leading to excellent thermal stability of its dielectric, ferroelectric, and piezoelectric properties. This behavior is mainly attributed to quenching-induced domain evolution as well as its octahedral tilt, which is linked to the increased oxygen vacancies. The substitution of long-range ordered ferroelectric domains for short-range polar nanodomains contributes to its increased coherence length and, consequently, enhancement of . This work provides an approach to the optimization of the ferroelectric ordering and thermal stability of NBT as well as an in-depth understanding of the quenching effect on the local structure, which could be applied to other relaxor-based ferroelectrics for optimization of their macroscopic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c15523DOI Listing

Publication Analysis

Top Keywords

thermal stability
16
ferroelectric ordering
12
optimization ferroelectric
8
ordering thermal
8
single crystal
8
thermal
4
stability
4
stability nabitio-based
4
nabitio-based lead-free
4
lead-free single
4

Similar Publications

LiCoO2 batteries for 3C electronics demand high charging voltage and wide operating temperature range, which are virtually impossible for existing electrolytes due to aggravated interfacial parasitic reactions and sluggish kinetics. Herein, we report an electrolyte design strategy based on a partially fluorinated ester solvent (i.e.

View Article and Find Full Text PDF

Cellulases are an ensemble of enzymes that hydrolyze cellulose chains into fermentable glucose and hence are widely used in bioethanol production. The last enzyme of the cellulose degradation pathway, β-glucosidase, is inhibited by its product, glucose. The product inhibition by glucose hinders cellulose hydrolysis limiting the saccharification during bioethanol production.

View Article and Find Full Text PDF

Extremely low lattice thermal conductivity in light-element solid materials.

Natl Sci Rev

January 2025

Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

Lattice thermal conductivity ( ) is of great importance in basic sciences and in energy conversion applications. However, low- crystalline materials have only been obtained from heavy elements, which typically exhibit poor stability and possible toxicity. Thus, low- materials composed of light elements should be explored.

View Article and Find Full Text PDF

Designing a 2D van der Waals oxide with lone-pair electrons as chemical scissor.

Natl Sci Rev

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

Two-dimensional (2D) van der Waals (vdW) materials are known for their intriguing physical properties, but their rational design and synthesis remain a great challenge for chemists. In this work, we successfully synthesized a new non-centrosymmetric oxide, i.e.

View Article and Find Full Text PDF

The ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!