Deciphering the genetic basis of vertebrate craniofacial variation is a longstanding biological problem with broad implications in evolution, development, and human pathology. One of the most stunning examples of craniofacial diversification is the adaptive radiation of birds, in which the beak serves essential roles in virtually every aspect of their life histories. The domestic pigeon (Columba livia) provides an exceptional opportunity to study the genetic underpinnings of craniofacial variation because of its unique balance of experimental accessibility and extraordinary phenotypic diversity within a single species. We used traditional and geometric morphometrics to quantify craniofacial variation in an F laboratory cross derived from the straight-beaked Pomeranian Pouter and curved-beak Scandaroon pigeon breeds. Using a combination of genome-wide quantitative trait locus scans and multi-locus modeling, we identified a set of genetic loci associated with complex shape variation in the craniofacial skeleton, including beak shape, braincase shape, and mandible shape. Some of these loci control coordinated changes between different structures, while others explain variation in the size and shape of specific skull and jaw regions. We find that in domestic pigeons, a complex blend of both independent and coupled genetic effects underlie three-dimensional craniofacial morphology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119316PMC
http://dx.doi.org/10.1111/ede.12395DOI Listing

Publication Analysis

Top Keywords

craniofacial variation
12
three-dimensional craniofacial
8
shape variation
8
domestic pigeons
8
craniofacial
7
shape
6
variation
6
complex genetic
4
genetic architecture
4
architecture three-dimensional
4

Similar Publications

Adapting a style based generative adversarial network to create images depicting cleft lip deformity.

Sci Rep

January 2025

Division of Plastic, Craniofacial and Hand Surgery, Sidra Medicine, and Weill Cornell Medical College, C1-121, Al Gharrafa St, Ar Rayyan, Doha, Qatar.

Training a machine learning system to evaluate any type of facial deformity is impeded by the scarcity of large datasets of high-quality, ethics board-approved patient images. We have built a deep learning-based cleft lip generator called CleftGAN designed to produce an almost unlimited number of high-fidelity facsimiles of cleft lip facial images with wide variation. A transfer learning protocol testing different versions of StyleGAN as the base model was undertaken.

View Article and Find Full Text PDF

Craniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks).

View Article and Find Full Text PDF

Aim: To compare three-dimensional (3D) facial morphology of various unilateral cleft subphenotypes at 9-years of age to normative data using a general face template and automatic landmarking. The secondary objective is to compare facial morphology of 9-year-old children with unilateral fusion to differentiation defects.

Methods: 3D facial stereophotogrammetric images of 9-year-old unilateral cleft patients were imported into 3DMedX® for processing.

View Article and Find Full Text PDF

Classification of Fibro-osseous Tumors in the Craniofacial Bones using DNA Methylation and Copy Number Alterations.

Mod Pathol

January 2025

Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands. Electronic address:

Fibro-osseous tumors of the craniofacial bones are a heterogeneous group of lesions comprising cemento-osseous dysplasia (COD), cemento-ossifying fibroma (COF), juvenile trabecular ossifying fibroma (JTOF), psammomatoid ossifying fibroma (PsOF), fibrous dysplasia (FD), and low-grade osteosarcoma (LGOS) with overlapping clinicopathological features. However, their clinical behavior and treatment differ significantly, underlining the need for accurate diagnosis. Molecular diagnostic markers exist for subsets of these tumors, including GNAS mutations in FD, SATB2 fusions in PsOF, mutations involving the RAS-MAPK signaling pathway in COD, and MDM2 amplification in LGOS.

View Article and Find Full Text PDF

Objective: The diagnosis of early osteoarthritis when therapeutic interventions may be most effective at reversing cartilage degeneration presents a clinical challenge. We describe a Raman arthroscopic probe and spectral analysis that measures biomarkers reflective of the content of predominant cartilage ECM constituents-glycosaminoglycans (GAG), collagen, water-essential to cartilage function. We compare the capability of Raman-probe-derived biomarkers to predict functional properties of cartilage to quantitative MRI and histopathology assessments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!