A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phenotypic plasticity in the energy metabolism of a small Andean rodent: Effect of short-term thermal acclimation and developmental conditions. | LitMetric

Phenotypic plasticity in the energy metabolism of a small Andean rodent: Effect of short-term thermal acclimation and developmental conditions.

J Exp Zool A Ecol Integr Physiol

Grupo de Investigaciones de la Biodiversidad, Instituto Argentino de Investigaciones de Zonas Áridas, CCT-Mendoza, CONICET, Mendoza, Argentina.

Published: April 2022

The study of phenotypic variation within species in response to different environments is a central issue in evolutionary and ecological physiology. Particularly, ambient temperature is one of the most important factors modulating interactions between animals and their environment. Phyllotis xanthopygus, a small Andean rodent, exhibits intraspecific differences along an altitudinal gradient in traits relevant to energy balance that persist after acclimation to common experimental temperatures. Therefore, we aim to explore geographic variations in energetic traits of P. xanthopygus and to assess the contribution of phenotypic plasticity to population differences. We compared metabolic rate and thermal conductance in response to different acclimation temperatures in animals collected at distinct altitudes (F0 generation) and in their offspring, born and raised under common-garden conditions (F1 generation). We found intraspecific differences in resting metabolic rate (RMR) of animals collected at different altitudes that were no longer evident in the F1 generation. Furthermore, although both generations showed the same pattern of RMR flexibility in response to acclimation temperature, its magnitude was lower for the F1 individuals. This suggests that developmental conditions affect the short-term acclimation capacity of this trait during adulthood. On the other hand, thermal conductance (C) showed irreversible plasticity, as animals raised in the laboratory at stable warm conditions had a relatively higher C than the animals from the field, showing no adjustments to thermal acclimation during adulthood in either group. In sum, our results support the hypothesis that the developmental environment shapes energetic traits, emphasizing the relevance of incorporating ontogeny in physiological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jez.2567DOI Listing

Publication Analysis

Top Keywords

phenotypic plasticity
8
small andean
8
andean rodent
8
thermal acclimation
8
developmental conditions
8
intraspecific differences
8
energetic traits
8
metabolic rate
8
thermal conductance
8
response acclimation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!