A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Behavior and fate of fungicide chlorothalonil in urban landscape soils and associated environmental concern. | LitMetric

Behavior and fate of fungicide chlorothalonil in urban landscape soils and associated environmental concern.

J Environ Sci Health B

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia.

Published: March 2022

This novel study investigated the behavior and fate of chlorothalonil in terms of kinetics, sorption‒desorption and leaching potential in urban landscape soils using batch experiments. The pseudo-second-order model well described the sorption kinetics of chlorothalonil in urban soils. Consequently, chlorothalonil was partitioned into heterogeneous surfaces of soil following the Freundlich isotherm model. According to PCA, soil organic matter (OM), silt, clay, and oxides of Al and Fe exhibited a significant positive correlation ( < 0.05) with chlorothalonil ( < 0.05), while sand content and soil pH showed a negative correlation at  < 0.05. In soils, decreased sorption of chlorothalonil was also due to the presence of undecomposed or partly decomposed OM, whereas increased sorption could be attributed to the combined effect of OM with C = O and C-H groups, silt, clay, Al and Fe oxides and hydrophobicity of the fungicide. Also, , G, and of four among nine urban soils indicated that chlorothalonil has a great potential for leaching into the groundwater from the soil surface, posing an unintended threat to non-target biota and food safety. Therefore, utmost care must be taken while applying chlorothalonil in urban landscapes, particularly on impervious surfaces, to minimize the impact on the ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03601234.2021.2014255DOI Listing

Publication Analysis

Top Keywords

behavior fate
8
chlorothalonil urban
8
urban landscape
8
landscape soils
8
fate fungicide
4
chlorothalonil
4
fungicide chlorothalonil
4
soils associated
4
associated environmental
4
environmental concern
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!