Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper describes a photocatalytic hydrogen evolution system that is dynamically and reversibly responsive to the pH of the surrounding solution through the actuation of a microhydrogel (microgel) matrix that hosts the photocatalysts (CdSe/CdS nanorods). The reversible actuation occurs within 0.58 (swelling) and 1.7 s (contraction). ΔpH = 0.01 relative to the p of the tertiary amine on the microgel polymer (7.27) results in a reversible change in the average diameter of the microgel hosts by a factor of 2.4 and a change in the photocatalytic turnover frequency (TOF) by a factor of 5. Kinetic isotope effect and photoluminescence quenching experiments reveal that the scavenging of the photoexcited hole by sulfite ions is the rate-limiting step and leads to the observed response of the TOF to pH through the actuation of the microgel. Molecular dynamics simulations quantify a greater local concentration of sulfite hole scavengers for pH < p.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c03713 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!