Liposomes can efficiently deliver messenger RNA (mRNA) into cells. When mRNA cocktails encoding different proteins are needed, a considerable challenge is to efficiently deliver all mRNAs into the cytosol of each individual cell. In this work, two methods are explored to co-deliver varying ratiometric doses of mRNA encoding red (R) or green (G) fluorescent proteins and it is found that packaging mRNAs into the same lipoplexes (mingle-lipoplexes) is crucial to efficiently deliver multiple mRNA types into the cytosol of individual cells according to the pre-defined ratio. A mixture of lipoplexes containing only one mRNA type (single-lipoplexes), however, seem to follow the "first come - first serve" principle, resulting in a large variation of R/G uptake and expression levels for individual cells leading to ratiometric dosing only on the population level, but rarely on the single-cell level. These experimental observations are quantitatively explained by a theoretical framework based on the stochasticity of mRNA uptake in cells and endosomal escape of mingle- and single-lipoplexes, respectively. Furthermore, the findings are confirmed in 3D retinal organoids and zebrafish embryos, where mingle-lipoplexes outperformed single-lipoplexes to reliably bring both mRNA types into single cells. This benefits applications that require a strict control of protein expression in individual cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811815 | PMC |
http://dx.doi.org/10.1002/advs.202102072 | DOI Listing |
J Med Internet Res
January 2025
Department of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Background: Efficient emergency patient transport systems, which are crucial for delivering timely medical care to individuals in critical situations, face certain challenges. To address this, CONNECT-AI (CONnected Network for EMS Comprehensive Technical-Support using Artificial Intelligence), a novel digital platform, was introduced. This artificial intelligence (AI)-based network provides comprehensive technical support for the real-time sharing of medical information at the prehospital stage.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
America's Physician Groups, Washington, DC.
Importance: Many physician groups are in 2-sided risk payment arrangements with Medicare Advantage plans (at-risk MA). Analysis of quality and health resource use under such arrangements may inform ongoing Medicare policy concerning payment and service delivery.
Objective: To compare quality and efficiency measures under 2 payment models: at-risk MA and fee-for-service (FFS) MA.
ACS Nano
January 2025
Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
As natural agonists of the stimulator of interferon genes (STING) protein, cyclic dinucleotides (CDNs) can activate the STING pathway, leading to the expression of type I interferons and various cytokines. Efficient activation of the STING pathway in antigen-presenting cells (APCs) and tumor cells is crucial for antitumor immune response. Tumor-derived exosomes can be effectively internalized by APCs and tumor cells and have excellent potential to deliver CDNs to the cytoplasm of APCs and tumor cells.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China.
To address the demands of rapidly advancing precision instruments requiring higher efficiency and miniaturization, permanent magnets must exhibit exceptional energy density, temperature stability, high magnetic energy product [()], and adequate coercivity (). Herein, we design rare earth Er-based magnets (2 : 17-type Er-magnets) with a composition of (Er, Sm)(Co, Fe, Cu, Zr). Erbium-based compounds (ErCo) offer a unique combination of temperature compensation and high saturation magnetization compared to other heavy rare earth elements, resulting in 2 : 17-type Er-magnets with superior temperature stability in and ().
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA.
The ability to precisely engineer cyanobacterial metabolism first requires the ability to efficiently deliver engineered DNA constructs. Here, we investigate how natural transformation efficiencies in Synechococcus sp. PCC 7002 can be greatly improved by leveraging the native and abundant cyanobacterial Highly Iterated Palindrome 1 (HIP1) sequence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!