AI Article Synopsis

  • Researchers conducted a VIGS screen using tobacco rattle virus on Nicotiana benthamiana to identify host factors linked to the susceptibility of the tomato spotted wilt orthotospovirus (TSWV).
  • The methodology was refined to enable systematic testing of thousands of clones while mitigating the impact of dual viral infections.
  • Five clones showed significant resistance to TSWV, with one clone targeting the ribosomal protein S6 gene family, which plays a key role in TSWV susceptibility and is also involved in the replication of various plant RNA viruses.

Article Abstract

To identify host factors for tomato spotted wilt orthotospovirus (TSWV), a virus-induced gene silencing (VIGS) screen using tobacco rattle virus (TRV) was performed on Nicotiana benthamiana for TSWV susceptibility. To rule out any negative effect on the plants' performance due to a double viral infection, the method was optimized to allow screening of hundreds of clones in a standardized fashion. To normalize the results obtained in and between experiments, a set of controls was developed to evaluate in a consist manner both VIGS efficacy and the level of TSWV resistance. Using this method, 4532 random clones of an N. benthamiana cDNA library were tested, resulting in five TRV clones that provided nearly complete resistance against TSWV. Here we report on one of these clones, of which the insert targets a small gene family coding for the ribosomal protein S6 (RPS6) that is part of the 40S ribosomal subunit. This RPS6 family is represented by three gene clades in the genome of Solanaceae family members, which were jointly important for TSWV susceptibility. Interestingly, RPS6 is a known host factor implicated in the replication of different plant RNA viruses, including the negative-stranded TSWV and the positive-stranded potato virus X.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828452PMC
http://dx.doi.org/10.1111/mpp.13169DOI Listing

Publication Analysis

Top Keywords

ribosomal protein
8
protein rps6
8
rps6 family
8
tomato spotted
8
spotted wilt
8
wilt orthotospovirus
8
nicotiana benthamiana
8
tswv susceptibility
8
tswv
6
members ribosomal
4

Similar Publications

Mono(ADP-ribosyl)ation (MARylation) is emerging as a critical regulator of ribosome function and translation. Herein, we demonstrate that RACK1, an integral component of the ribosome, is MARylated by the mono(ADP-ribosyl) transferase (MART) PARP14 in ovarian cancer cells. MARylation of RACK1 is required for stress granule formation and promotes the colocalization of RACK1 in stress granules with G3BP1, eIF3η, and 40S ribosomal proteins.

View Article and Find Full Text PDF

Betacoronaviruses express a small internal (I) protein that is encoded by the same subgenomic RNA (sgRNA) as the nucleocapsid (N) protein. Translation of the +1 reading frame of the N sgRNA through leaky ribosomal scanning leads to expression of the I protein. The I protein is an accessory protein reported to evade host innate immune responses during coronavirus infection.

View Article and Find Full Text PDF

Gene model for the ortholog of ( ) in the Dyak_CAF1 Genome Assembly (GenBank Accession: GCA_000005975.1) of . This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.

View Article and Find Full Text PDF

Cargo hitchhiking autophagy - a hybrid autophagy pathway utilized in yeast.

Autophagy

January 2025

Department of Cell and Molecular Biology, Virtua Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA.

Macroautophagy is a catabolic process that maintains cellular homeostasis by recycling intracellular material through the use of double-membrane vesicles called autophagosomes. In turn, autophagosomes fuse with vacuoles (in yeast and plants) or lysosomes (in metazoans), where resident hydrolases degrade the cargo. Given the conservation of autophagy, is a valuable model organism for deciphering molecular details that define macroautophagy pathways.

View Article and Find Full Text PDF

RbgA (ribosome biogenesis GTPase A) is involved in the maturation of later stages of the 50S ribosomal subunit by associating with the 45S ribosomal subunit. However, this binding relies on the specific nucleotide-bound state of RbgA-GTP-bound state is more favorable compared GDP-bound state, attributed to the conformational variations between those states. Therefore, to explore the conformational changes of RbgA, all-atom MD simulations of RbgA were carried out under various nucleotide bound states (GDP, GTP, GTP-Mg and GMPPNP-Mg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!