Extracellular vesicles (EVs), which express a repertoire of cargo molecules (cf. proteins, microRNA, lipids, etc.), have been garnering a prominent role in the modulation of several cellular processes. Here, using both non-human primate and rodent model systems, we provide evidence that brain-derived EV (BDE) miRNA, miR-29a-3p (mir-29a), is significantly increased during chronic methamphetamine (MA) exposure. Further, miR-29a levels show significant increase both with drug-seeking and reinstatement in a rat MA self-administration model. We also show that EV-associated miR-29a is enriched in EV pool comprising of small EVs and exomeres and further plays a critical role in MA-induced inflammation and synaptodendritic damage. Furthermore, treatment with the anti-inflammatory drug ibudilast (AV411), which is known to reduce MA relapse, decreased the expression of miR-29a and subsequently attenuated inflammation and rescued synaptodendritic injury. Finally, using plasma from MUD subjects, we provide translational evidence that EV-miR29a could potentially serve as a biomarker to detect neuronal damage in humans diagnosed with MA use disorder (MUD). In summary, our work suggests that EV-associated miR-29a-3p plays a crucial role in MUD and might be used as a potential blood-based biomarker for detecting chronic inflammation and synaptic damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674191 | PMC |
http://dx.doi.org/10.1002/jev2.12177 | DOI Listing |
Cureus
December 2024
Cardiology, Lower Bucks Hospital, Bristol, USA.
This case report presents a 37-year-old male with a complex medical history, including HIV, chronic methamphetamine and cocaine use, and an atrial septal defect, who developed severe pulmonary arterial hypertension (PAH), biventricular failure, and recurrent stroke. The patient was admitted with acute neurological deficits and respiratory failure, which rapidly progressed despite intensive management. Laboratory and imaging studies revealed severe cardiac dysfunction and elevated pulmonary vascular resistance.
View Article and Find Full Text PDFMethamphetamine (METH) is a highly addictive and dangerous drug that mainly affects neurotransmitters in the brain and leads to feelings of alertness and euphoria. The METH use can lead to addiction, which has become a worldwide problem, resulting in a slew of public health and safety issues. Recent studies showed that chronic METH use can lead to neurotoxicity, neuro-inflammation and oxidative stress which can lead to neuronal injury.
View Article and Find Full Text PDFPhytomedicine
December 2024
Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, PR China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, PR China. Electronic address:
Addict Neurosci
December 2024
Department of Neuroscience, Medical University of South Carolina, Basic Science Building 416, MSC 510, 173 Ashley Avenue, Charleston, SC 29425, USA.
Methamphetamine (meth) use disorder is part of an overarching use disorder that encompasses continued drug seeking and an increased risk of returning to drug use following periods of abstaining. Chronic meth use results in drug-induced cortical plasticity in the perirhinal cortex (PRC) that mediates responses to novelty. PRH projection targets are numerous and include the nucleus accumbens core (NAc).
View Article and Find Full Text PDFPhysiol Behav
December 2024
Faculty of Sports Science, Ningbo University, Zhejiang, PR China. Electronic address:
Objective: Chronic methamphetamine use is frequently associated with impairments in the attentional network (alerting, orienting, conflict networks) and related brain regions, which significantly trigger METH-related cravings. The aim of this study is to investigate the effects of moderate-intensity acute aerobic exercise on cravings and attentional networks in individuals with methamphetamine use disorders (MUD).
Methods: Using a cross-over design, this study recruited 32 male MUDs to randomly complete a 30min moderate-intensity aerobics exercise condition (65%-75% HRmax) and an assigned material reading control condition, with a 7-day washout interval.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!