Danio rerio (zebrafish), traditionally used in forward genetic screens, has in the last decade become a popular model for reverse genetic studies with the introduction of TALENS, zinc finger nucleases, and CRISPR/Cas9. Unexpectedly, homozygous frameshift mutations generated by these tools frequently result in phenotypes that are less penetrant than those seen in embryos injected with antisense morpholino oligonucleotides targeting the same gene. One explanation for the difference is that some frameshift mutations result in nonsense-mediated decay of the gene transcript, a process which can induce expression of homologous genes. This form of genetic compensation, called transcriptional adaptation, does not occur when the mutant allele results in no RNA transcripts being produced from the targeted gene. Such RNA-less mutants can be generated by deleting a gene's promoter using a pair of guide RNAs and Cas9 protein. Here, we present a protocol and use it to generate alleles of arhgap29b and slc41a1 that lack detectable zygotic transcription. In the case of the arhgap29b mutant, an emerging phenotype did not segregate with the promoter deletion mutation, highlighting the potential for off-target mutagenesis with these tools. In summary, this chapter describes a method to generate zebrafish mutants that avoid a form of genetic compensation that occurs in many frameshift mutants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136374 | PMC |
http://dx.doi.org/10.1007/978-1-0716-1847-9_8 | DOI Listing |
Mol Ther Nucleic Acids
March 2025
Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada.
Tay-Sachs disease is a fatal neurodegenerative disorder caused by mutations inactivating the metabolic enzyme HexA. The most common mutation is c.1278insTATC, a tandem 4-bp duplication disrupting expression by frameshift.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Baoding Hospital, Beijing Children's Hospital Affiliated with Capital Medical University, Baoding, China.
Objective: The objective of this study is to investigate the clinical presentation and underlying genetic etiology of a Chinese child diagnosed with idiopathic central precocious puberty (ICPP).
Methods: Clinical data from a pediatric patient with ICPP, including medical history, physical examination findings, laboratory results, and imaging studies, were collected and analyzed. Whole exome sequencing (WES) was performed to identify potential pathogenic genetic variants underlying the patient's ICPP.
Int Immunopharmacol
January 2025
Department of Transfusion Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China. Electronic address:
Objective: The objective of this study was to rigorously investigate and elucidate the genetic mechanisms underlying the formation of the RH blood group in a specific case and to systematically analyse the RH blood group genes among the family members of the proband.
Methods: Serological methods were used to determine the RH blood group phenotype of the proband. To elucidate the underlying genetic mechanism responsible for the RH phenotype, a comprehensive approach was undertaken, including RHCE genotyping, sequencing of RHD and RHCE genes, and exon sequencing of RHAG.
Am J Hum Genet
January 2025
Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.
View Article and Find Full Text PDFJ Clin Immunol
January 2025
Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, 19104, USA.
Major histocompatibility complex class I deficiency results from deleterious biallelic variants in TAP1, TAP2, TAPBP, and B2M genes. Only a few patients with variant-curated TAP1 deficiency (TAP1D) have been reported in the literature and the clinical phenotype has been variable with an emphasis on autoimmune and inflammatory complications. We report TAP1D in a Nepalese girl with a severe clinical phenotype with serious viral infections at a very young age.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!