Intestinal microbiota (IM) dysbiosis contributes to the development of autoimmune hepatitis (AIH). This study aimed to investigate the potential effect of fecal microbiota transplantation (FMT) in a murine model of experimental AIH (EAH), a condition more similar to that of AIH patients. Changes in the enteric microbiome were determined in AIH patients and EAH mice. Moreover, we established an experimental model of secondary EAH mice harboring dysbiosis (ABx) to analyze the effects of therapeutic FMT administration on follicular regulatory T (TFR) and helper T (TFH) cell imbalances and IM composition . Alterations of the IM composition and bacterial translocation occurred in AIH patients compared to nonalcoholic fatty liver disease patients and healthy controls (HCs). Therapeutic FMT significantly attenuated liver injury and bacterial translocation and improved the imbalance between splenic TFR cells and TFH cells in ABx EAH mice. Furthermore, therapeutic FMT also partially reversed the increasing trend in serum liver enzymes (ALT and AST) of CXCR5-/-EAH mice on the 28th day. Finally, therapeutic FMT could effectively restore antibiotic-induced IM dysbiosis in EAH mice. Taken together, our findings demonstrated that FMT was capable of controlling hepatitis progression in EAH mice, and the associated mechanism might be involved in the regulation of the TFR/TFH immune imbalance and the restoration of IM composition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8667314 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.728723 | DOI Listing |
Int Immunopharmacol
January 2025
Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China; School of Clinical Medicine, The First People's Hospital of Lin'an District, Hangzhou, Lin'an People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou 311300, China. Electronic address:
Autoimmune hepatitis (AIH) is a liver disease marked by inflammation of unknown origin. If untreated, it can progress to cirrhosis or liver failure, posing a significant health risk. Currently, effective drug therapies are lacking in clinical practice.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
February 2025
Department of Pediatrics, the Second People's Hospital of Changzhou, the Third Affiliate Hospital of Nanjing medical University, Changzhou, Jiangsu, China.
Objective: Autoimmune hepatitis (AIH) is a chronic progressive autoimmune disease with unclear etiology. As a bioactive metabolite of Vitamin D, 1,25(OH)D can stimulate the production of tolerogenic dendritic cells (DCs) that overexpress programmed cell death ligand 1 (PD-L1). Although these cells have been shown to play a part in autoimmune diseases, their role in AIH remains unclear.
View Article and Find Full Text PDFJ Transl Med
August 2024
Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
Background: The global prevalence of autoimmune hepatitis (AIH) is increasing due in part to the lack of effective pharmacotherapies. Growing evidence suggests that fibroblast growth factor 4 (FGF4) is crucial for diverse aspects of liver pathophysiology. However, its role in AIH remains unknown.
View Article and Find Full Text PDFNat Commun
June 2024
Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
In mammalian hearts myocardial infarction produces a permanent collagen-rich scar. Conversely, in zebrafish a collagen-rich scar forms but is completely resorbed as the myocardium regenerates. The formation of cross-links in collagen hinders its degradation but cross-linking has not been well characterized in zebrafish hearts.
View Article and Find Full Text PDFJ Proteomics
June 2024
Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Understanding microglial states in the aging brain has become crucial, especially with the discovery of numerous Alzheimer's disease (AD) risk and protective variants in genes such as INPP5D and TREM2, which are essential to microglia function in AD. Here we present a thorough examination of microglia-like cells and primary mouse microglia at the proteome and transcriptome levels to illuminate the roles these genes and the proteins they encode play in various cell states. First, we compared the proteome profiles of wildtype and INPP5D (SHIP1) knockout primary microglia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!