Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sputnik Planitia is a nitrogen-ice-filled basin on Pluto. Its polygonal surface patterns have been previously explained as a result of solid-state convection with either an imposed heat flow or a temperature difference within the 10-km-thick ice layer. Neither explanation is satisfactory, because they do not exhibit surface topography with the observed pattern: flat polygons delimited by narrow troughs. Internal heating produces the observed patterns, but the heating source in such a setup remains enigmatic. Here we report the results of modelling the effects of sublimation at the surface. We find that sublimation-driven convection readily produces the observed polygonal structures if we assume a smaller heat flux (~0.3 mW m) at the base of the ice layer than the commonly accepted value of 2-3 mW m (ref. ). Sustaining this regime with the latter value is also possible, but would require a stronger viscosity contrast (~3,000) than the nominal value (~100) considered in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-021-04095-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!