Identifying new biomarkers beyond the established risk factors that make it possible to predict and prevent ischemic stroke has great significance. Extracellular vesicles are powerful cell‒cell messengers, containing disease-specific biomolecules, which makes them powerful diagnostic candidates. Therefore, this study aimed to identify proteins derived from extracellular vesicles enriched serum related to future ischemic stroke events, using a proteomic method. Of Japanese subjects who voluntarily participated in health checkups at our institute a number of times, 10 subjects (6 males and 4 females, age: 64.2 ± 3.9 years) who developed symptomatic ischemic stroke (7.3 ± 4.4 years' follow-up) and 10 age‒sex matched controls without brain lesions (6.7 ± 2.8 years' follow-up) were investigated. Extracellular vesicles enriched fractions were derived from serum collected at the baseline visit. Differentially expressed proteins were evaluated using isobaric tagging for relative and absolute protein quantification (iTRAQ)-based proteomic analysis. Of the 29 proteins identified, alpha-2-macroglobulin, complement C1q subcomponent subunit B, complement C1r subcomponent, and histidine-rich glycoprotein were significantly upregulated (2.21-, 2.15-, 2.24-, and 2.16-fold, respectively) in subjects with future ischemic stroke, as compared with controls. Our study supports the concept of serum-derived extracellular vesicles enriched fractions as biomarkers for new-onset stroke. These proteins may be useful for prediction or for targeted therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674262 | PMC |
http://dx.doi.org/10.1038/s41598-021-03497-0 | DOI Listing |
Neurochem Res
January 2025
Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
In recent decades, researchers and clinicians have increasingly focused on glial cell function. One of the primary mechanisms influencing these functions is through extracellular vesicles (EVs), membrane-bound particles released by cells that are essential for intercellular communication. EVs can be broadly categorized into four main types based on their size, origin, and biogenesis: large EVs, small EVs (sEVs), autophagic EVs, and apoptotic bodies.
View Article and Find Full Text PDFBackground: Although invasiveness is one of the major determinants of the poor glioblastoma (GBM) outcome, the mechanisms of GBM invasion are only partially understood. Among the intrinsic and environmental processes promoting cell-to-cell interaction processes, eventually driving GBM invasion, we focused on the pro-invasive role played by Extracellular Vesicles (EVs), a heterogeneous group of cell-released membranous structures containing various bioactive cargoes, which can be transferred from donor to recipient cells.
Methods: EVs isolated from patient-derived GBM cell lines and surgical aspirates were assessed for their pro-migratory competence by spheroid migration assays, calcium imaging, and PYK-2/FAK phosphorylation.
Front Med (Lausanne)
January 2025
Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China.
Cell therapy is an emerging strategy for precision treatment of scleroderma. This review systematically summarizes the research progress of mesenchymal stem cell (MSC) and chimeric antigen receptor T cell (CAR-T) therapies in scleroderma and discusses the challenges and future directions for development. MSCs possess multiple functions, including immunomodulation, anti-fibrosis, and promotion of vascular regeneration, all of which can improve multiple pathological processes associated with scleroderma.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
Background And Objective: MicroRNAs (miRNAs) are implicated in cancer by exerting roles in tumor growth, metastasis, and even drug resistance. The general trends of miRNA research in diverse cancers are not fully understood. In this work, miRNA-related research in colorectal cancer, prostate cancer, leukemia, and brain tumors was analyzed in search of key research trends with clinical potential.
View Article and Find Full Text PDFFront Genet
January 2025
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
Objectives: This study aimed to investigate the impact of low-intensity pulsed ultrasound (LIPUS) treatment on the miRNA and mRNA profiles of stem cell-derived extracellular vesicles (EVs). Specifically, it sought to identify key miRNAs and their target mRNAs associated with enhanced therapeutic efficacy in LIPUS-treated stem cell-derived EVs.
Methods: Utilizing miRNA deep-sequencing data from the Gene Expression Omnibus database, differential gene analysis was performed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!