In the present work, exfoliated graphite oxide (E-GO) was prepared by sonicating graphite oxide (GO) (prepared by modified Hummer's and Offemam methods). Prepared GO and E-GO were characterized using infrared absorption spectroscopy, X-ray diffraction, and scanning electron microscopy. The electrocatalytic properties of GO and E-GO towards detection of dopamine (DA), uric acid (UA), and folic acid (FA) were investigated using cyclic voltammetry and differential pulse voltammetry. Our results revealed that E-GO has a slighter advantage over the GO as an electrode modifier for detection DA, UA, and FA, which might be ascribed to the good conductivity of E-GO when compared to the GO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674362PMC
http://dx.doi.org/10.1038/s41598-021-01328-wDOI Listing

Publication Analysis

Top Keywords

graphite oxide
16
exfoliated graphite
8
uric acid
8
acid folic
8
folic acid
8
e-go
5
graphite
4
oxide exfoliated
4
oxide modifier
4
modifier voltametric
4

Similar Publications

A cost-effective, eco-friendly, and highly efficient one-pot electrochemical process has been described for the synthesis of 4-1,3-benzoxazine and 4,5-dihydro-1,3-benzoxazepine derivatives by employing 2-aminobenzyl alcohols, 2-(2-aminophenyl)ethan-1-ol, isothiocyanate derivatives, and TBAPF as an electrolyte. The developed method is accomplished at 25 °C with a constant current of 20 mA. Utilizing a graphite anode and a platinum cathode in a dimethyl sulfoxide solvent, the devised metal-free electrochemical approach minimizes the production of waste and eliminates the need for external oxidizing agents.

View Article and Find Full Text PDF

Thermostable terahertz metasurface enabled by graphene assembly film for plasmon-induced transparency.

Sci Rep

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.

With the increasing demand on high-density integration and better performance of micro-nano optoelectronic devices, the operation temperatures are expected to significantly increase under some extreme conditions, posing a risk of degradation to metal-based micro-/nano-structured metasurfaces due to their low tolerance to high temperature. Therefore, it is urgent to find new materials with high-conductivity and excellent high-temperature resistance to replace traditional micro-nano metal structures. Herein, we have proposed and fabricated a thermally stable graphene assembly film (GAF), which is calcined at ultra-high temperature (~ 3000 ℃) during the reduction of graphite oxide (GO).

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).

View Article and Find Full Text PDF

Arsenic (As) contamination in groundwater has become a global concern, and it poses a serious threat to the health of millions of people. Groundwater with high As concentrations has been reported worldwide. It is widely recognized that the toxicity of As largely depends on its chemical forms, making As speciation a critical issue.

View Article and Find Full Text PDF

Photothermal therapy, in which a laser is an effective tool, is a promising method for cancer treatment. Laser parameters, including power, irradiation time, type of laser radiation (continuous or chopped), and the concentration of the photothermal agent, can affect the efficiency of this method. Therefore, this study investigated and compared the effects of different laser parameters on the efficiency of photothermal treatment for cervical cancer, which is the fourth most prevalent cancer in women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!