Background: The neurocognitive mechanisms underlying autism spectrum disorder (ASD) remain unclear. Progress has been largely hampered by small sample sizes, variable age ranges and resulting inconsistent findings. There is a pressing need for large definitive studies to delineate the nature and extent of key case/control differences to direct research towards fruitful areas for future investigation. Here we focus on perception of biological motion, a promising index of social brain function which may be altered in ASD. In a large sample ranging from childhood to adulthood, we assess whether biological motion preference differs in ASD compared to neurotypical participants (NT), how differences are modulated by age and sex and whether they are associated with dimensional variation in concurrent or later symptomatology.
Methods: Eye-tracking data were collected from 486 6-to-30-year-old autistic (N = 282) and non-autistic control (N = 204) participants whilst they viewed 28 trials pairing biological (BM) and control (non-biological, CTRL) motion. Preference for the biological motion stimulus was calculated as (1) proportion looking time difference (BM-CTRL) and (2) peak look duration difference (BM-CTRL).
Results: The ASD group showed a present but weaker preference for biological motion than the NT group. The nature of the control stimulus modulated preference for biological motion in both groups. Biological motion preference did not vary with age, gender, or concurrent or prospective social communicative skill within the ASD group, although a lack of clear preference for either stimulus was associated with higher social-communicative symptoms at baseline.
Limitations: The paired visual preference we used may underestimate preference for a stimulus in younger and lower IQ individuals. Our ASD group had a lower average IQ by approximately seven points. 18% of our sample was not analysed for various technical and behavioural reasons.
Conclusions: Biological motion preference elicits small-to-medium-sized case-control effects, but individual differences do not strongly relate to core social autism associated symptomatology. We interpret this as an autistic difference (as opposed to a deficit) likely manifest in social brain regions. The extent to which this is an innate difference present from birth and central to the autistic phenotype, or the consequence of a life lived with ASD, is unclear.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672507 | PMC |
http://dx.doi.org/10.1186/s13229-021-00476-0 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.
We report a new NMR method for treating two-site chemical exchange involving half-integer quadrupolar nuclei in a solution. The new method was experimentally verified with extensive Na ( = 3/2), K ( = 3/2), and Rb ( = 3/2) NMR results from alkali metal ions (Na, K, and Rb) in a solution over a wide range of molecular tumbling conditions. In the fast-motion limit, all allowed single-quantum NMR transitions for a particular quadrupolar nucleus are degenerate giving rise to one Lorentzian signal.
View Article and Find Full Text PDFActa Orthop
January 2025
Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands.
Background And Purpose: This study updates 2 parallel systematic reviews and meta-analyses from 2012, which established the 1-year radiostereometric (RSA) migration thresholds for tibial components of total knee replacements (TKR) based on the risk of late revision for aseptic loosening from survival studies. The primary aim of this study was to determine the (mis)categorization rate of the 2012 thresholds using the updated review as a validation dataset. Secondary aims were evaluation of 6-month migration, mean continuous (1- to 2-year) migration, and fixation-specific thresholds for tibial component migration.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Musculoskeletal Institute, Atrium Health Carolinas Medical Center; Orthopaedic Surgery, Wake Forest University School of Medicine; and OrthoCarolina, Charlotte, North Carolina, USA.
Background: Loss of motion and arthrofibrosis after anterior cruciate ligament (ACL) reconstruction (ACLR) can be devastating complications for athletes. The cellular and molecular pathogenesis of arthrofibrosis is poorly understood, limiting prevention and treatment options. Synovial inflammation may contribute to post-ACLR arthrofibrosis.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Hydrogen-atom transfer is crucial in a myriad of chemical and biological processes, yet the accurate and efficient description of hydrogen-atom transfer reactions and kinetic isotope effects remains challenging due to significant quantum effects on hydrogenic motion, especially tunneling and zero-point energy. In this paper, we combine transition state theory (TST) with the recently developed constrained nuclear-electronic orbital (CNEO) theory to propose a new transition state theory denoted CNEO-TST. We use CNEO-TST with CNEO density functional theory (CNEO-DFT) to predict reaction rate constants for two prototypical gas-phase hydrogen-atom transfer reactions and their deuterated isotopologic reactions.
View Article and Find Full Text PDFSci Signal
January 2025
Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
Infection with herpes simplex virus type 1 (HSV-1) in the brains of carriers increases the risk of Alzheimer's disease (AD). We previously found that latent HSV-1 in a three-dimensional in vitro model of -heterozygous human brain tissue was reactivated in response to neuroinflammation caused by exposure to other pathogens. Because traumatic brain injury also causes neuroinflammation, we surmised that brain injury might similarly reactivate latent HSV-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!