Phylogenetic relationships among the nine major autotrophic stramenopile taxa were inferred in a combined analysis of the rbcL, SSU rDNA, partial LSU rRNA, carotenoid, and ultrastructural data sets. The structure of the shortest combined tree is: (Outgroup, ((((Bacillariophyceae, (Pelagophyceae, Dictyochophyceae)),((Phaeophyceae, Xanthophyceae), Raphidophyceae)), Eustigmatophyceae),(Chrysophyceae, Synurophyceae))). The Synurophyceae/Chrysophyceae is the best supported group followed by the Phaeophyceae/Xanthophyceae and the Pelagophyceae/Dictyochophyceae clades. The monophyletic groups composed of Bacillariophyceae/Pelagophyceae/Dictyochophyceae and Phaeophyceae/Xanthophyceae/Raphidophyceae received the lowest Bremer support values. The optimal combined tree suggests that the diatom frustule is derived from the siliceous "skeleton" in Dictyochophyceae, that the reduced flagellar apparatus arose once in the Bacillariophyceae/Dictyochophyceae/Pelagophyceae clade, and that the specific photoreceptor-eyespot apparatus in Chrysophyceae and the Phaeophyceae/Xantophyceae clade originated independently within the autotrophic stramenopiles. Despite conflicts in tree structure between the most-parsimonious combined phylogeny and the optimal tree(s) of each data partition, it cannot be concluded that extensive incongruence exists between the data sets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1096-0031.2001.tb00119.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!