In interior cardiac computed tomography (CT) imaging, the x-ray beam is collimated to a limited field-of-view covering the heart volume, which decreases the radiation exposure to surrounding tissues. Spectral CT enables the creation of virtual monochromatic images (VMIs) through a computational material decomposition process. This study investigates the utility of VMIs for beam hardening (BH) reduction in interior cardiac CT, and further, the suitability of VMIs for coronary artery calcium (CAC) scoring and volume assessment is studied using spectral photon counting detector CT (PCD-CT).coronary artery samples ( 18) were inserted in an epoxy rod phantom. The rod was scanned in the conventional CT geometry, and subsequently, the rod was positioned in a torso phantom and re-measured in the interior PCD-CT geometry. The total energy (TE) 10-100 keV reconstructions from PCD-CT were used as a reference. The low energy 10-60 keV and high energy 60-100 keV data were used to perform projection domain material decomposition to polymethyl methacrylate and calcium hydroxylapatite basis. The truncated basis-material sinograms were extended using the adaptive detruncation method. VMIs from 30-180 keV range were computed from the detruncated virtual monochromatic sinograms using filtered back projection. Detrending was applied as a post-processing method prior to CAC scoring. The results showed that BH artefacts from the exterior structures can be suppressed with high (≥100 keV) VMIs. With appropriate selection of the monoenergy (46 keV), the underestimation trend of CAC scores and volumes shown in Bland-Altman (BA) plots for TE interior PCD-CT was mitigated, as the BA slope values were -0.02 for the 46 keV VMI compared to -0.21 the conventional TE image. To conclude, spectral PCD-CT imaging using VMIs could be applied to reduce BH artefacts interior CT geometry, and further, optimal selection of VMI may improve the accuracy of CAC scoring assessment in interior PCD-CT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/2057-1976/ac4397 | DOI Listing |
Acad Radiol
December 2024
Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.); Division of Medical Physics, University of Florida College of Medicine, Gainesville, FL (R.F.); Department of Neurology, Division of Movement Disorders, University of Florida College of Medicine, Gainesville, FL (R.F.); Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Quebec, Canada (R.F.); Department of Radiology, AdventHealth Medical Group, Maitland, FL (R.F.). Electronic address:
Rationale And Objectives: To evaluate and compare image quality of different energy levels of virtual monochromatic images (VMIs) using standard versus strong deep learning spectral reconstruction (DLSR) on dual-energy CT pulmonary angiogram (DECT-PA).
Materials And Methods: A retrospective study was performed on 70 patients who underwent DECT-PA (15 PE present; 55 PE absent) scans. VMIs were reconstructed at different energy levels ranging from 35 to 200 keV using standard and strong levels with deep learning spectral reconstruction.
Eur Radiol
December 2024
Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Objective: Among the advancements in computed tomography (CT) technology, photon-counting computed tomography (PCCT) stands out as a significant innovation, providing superior spectral imaging capabilities while simultaneously reducing radiation exposure. Its long-term stability is important for clinical care, especially longitudinal studies, but is currently unknown. This study sets out to comprehensively analyze the long-term stability of a first-generation clinical PCCT scanner.
View Article and Find Full Text PDFCirc Rep
December 2024
Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan.
Background: This study aimed to determine whether spectral imaging with dual-energy computed tomography (CT) can improve diagnostic performance for coronary plaque characterization.
Methods And Results: We conducted a retrospective analysis of 30 patients with coronary plaques, using coronary CT angiography (dual-layer CT) and intravascular ultrasound (IVUS) studies. Based on IVUS findings, patients were diagnosed with either vulnerable or stable plaques.
Br J Radiol
November 2024
Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Korea.
Objectives: To suggest an optimal energy level of virtual monochromatic images (VMIs) in dual-energy CT arthrography of the wrist.
Methods: This retrospective study included 53 patients with wrist CT arthrography. Conventional polychromatic images and VMIs at four energy levels (40 to 70 keV at 10 keV intervals) were obtained.
Clin Radiol
September 2024
University Centre for Research & Development Department of Pharmaceutical Sciences, Chandigarh University Gharuan, Mohali, Punjab, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!