2D multifunctional SiAs/GeAsvan der Waals heterostructure.

Nanotechnology

College of Physics, Sichuan University, Chengdu, 610065, Sichuan Province, People's Republic of China.

Published: July 2022

The structural and electronic properties of two-dimensional (2D) SiAs/GeAsvan der Waals heterostructure (vdWH) and its applications are investigated by combing first-principles calculations and Silvaco Atlas simulations. The stable SiAs/GeAsvdWH exhibits an indirect bandgap of 0.99 eV in type II band alignment for light detection and energy harvesting. The vdWH can exhibit a direct bandgap up to 0.66 eV by applying an appropriate electric field (). Due to theinduced charge redistribution, its band alignment can be transformed from type II to type I for light-emitting. Further simulation shows that the band alignment of SiAs/GeAsvdWH can be tuned back and forth between type II and type I by gate voltage in a single field-effect transistor for multiple functional applications. These results may be useful for applications of the SiAs/GeAsheterostructure in future electronic and optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac434fDOI Listing

Publication Analysis

Top Keywords

band alignment
12
sias/geasvan der
8
der waals
8
waals heterostructure
8
type type
8
type
5
multifunctional sias/geasvan
4
heterostructure structural
4
structural electronic
4
electronic properties
4

Similar Publications

Modification of the Se/MoO Rear Interface for Efficient Wide-Band-Gap Trigonal Selenium Solar Cells.

ACS Appl Mater Interfaces

January 2025

Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.

Trigonal selenium (t-Se) is a promising wide-band-gap photovoltaic material with a high absorption coefficient, abundant resources, simple composition, nontoxicity, and a low melting point, making it suitable for absorbers in advanced indoor and tandem photovoltaic applications. However, severe electrical losses at the rear interface of the t-Se absorber, caused by work function and lattice mismatches, limit the voltage output and overall performance. In this study, a strategy to enhance carrier transport and collection by modifying interfacial chemical interactions is proposed.

View Article and Find Full Text PDF

In-Plane Transition-Metal Dichalcogenide Junction with Nearly Zero Interfacial Band Offset.

ACS Nano

January 2025

Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, School of Physics, Advanced Research Institute of Multidisciplinary Science, and School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.

Two-dimensional in-plane transition-metal dichalcogenide (TMD) junctions have a range of potential applications in next-generation electronic devices. However, limited by the difficulties in ion implantation on 2D systems, the fabrication of the in-plane TMD junctions still relies on the lateral epitaxy of different materials, which always induces lattice mismatch and interfacial scattering. Here, we report the in-plane TMD junction formed with monolayer (ML) PtTe at the boundary of ML and bilayer graphene on SiC.

View Article and Find Full Text PDF

To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.

View Article and Find Full Text PDF

Band Tailoring Enabled Perovskite Devices for X-Ray to Near-Infrared Photodetection.

Adv Sci (Weinh)

January 2025

School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.

Perovskite semiconductors have shown significant promise for photodetection due to their low effective carrier masses and long carrier lifetimes. However, achieving balanced detection across a broad spectrum-from X-rays to infrared-within a single perovskite photodetector presents challenges. These challenges stem from conflicting requirements for different wavelength ranges, such as the narrow bandgap needed for infrared detection and the low dark current necessary for X-ray sensitivity.

View Article and Find Full Text PDF

κ/β-GaO Type-II Phase Heterojunction.

Adv Mater

January 2025

Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

Ultrawide-bandgap gallium oxide (GaO) holds immense potential for crucial applications such as solar-blind photonics and high-power electronics. Although several GaO polymorphs, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!