Cochlear implants are the most successful neural prostheses worldwide and routinely restore sensorineural hearing loss by direct electrical stimulation of the auditory nerve. Enhancing this standard implant by chemical sensor functionality opens up new possibilities, ranging from access to the biochemical microenvironment of the implanted electrode array to the long-term study of the electrode status. We developed an electrochemical method to turn the platinum stimulation microelectrodes of cochlear implants into electrochemical sensors. The electrodes showed excellent and stable chemical sensor properties, as demonstrated by in vitro characterizations with combined amperometric and active potentiometric dissolved oxygen and hydrogen peroxide measurements. Linear, stable and highly reproducible sensor responses within the relevant concentration ranges with negligible offset were shown. This approach was successfully applied in vivo in an animal model. Intracochlear oxygen dynamics in rats upon breathing pure oxygen were reproducibly and precisely measured in real-time from the perilymph. At the same time, correct implant placement and its functionality was verified by measurements of electrically evoked auditory brainstem responses with clearly distinguishable peaks. Acute measurements indicated no adverse influence of electrical stimulation on electrochemical measurements and vice versa. Our work is ground-breaking towards advanced implant functionality, future implant lifetime monitoring, and implant-life-long in situ investigation of electrode degradation in cochlear implant patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2021.113859 | DOI Listing |
Otol Neurotol
February 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Donders Center for Neuroscience, Radboud University Medical Center, Radboud University, Nijmegen, the Netherlands.
Objective: To compare the 3-year outcomes of the modified minimally invasive Ponto surgery (m-MIPS) to both the original MIPS (o-MIPS) and linear incision technique with soft tissue preservation (LIT-TP) for inserting bone-anchored hearing implants (BAHIs).
Study Design: Prospective study with three patient groups: m-MIPS, o-MIPS, and LIT-TP.
Setting: Tertiary referral center.
Otol Neurotol
February 2025
Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota.
Objective: To analyze the use of electrical field imaging (EFI) in the detection of extracochlear electrodes in cochlear implants (CI).
Study Design: Retrospective cohort study.
Setting: Tertiary academic medical center.
Objective: The aim of this study is to test the feasibility of a custom 3D-printed guide for performing a minimally invasive cochleostomy for cochlear implantation.
Study Design: Prospective performance study.
Setting: Secondary care.
Otol Neurotol
February 2025
Department of Surgery, Section of Otolaryngology-Head and Neck Surgery, University of Chicago Medicine, Chicago, Illinois.
Objective: This study aims to evaluate the potential association of perioperative hearing outcomes with frailty by Modified 5-Item Frailty Index (mFI-5).
Design: Retrospective cross-sectional study.
Setting: Single-institutional study conducted at a tertiary care hospital between January 2018 and January 2022.
Otol Neurotol
February 2025
Department of ORL-Head & Neck Surgery and Audiology, Odense University Hospital, Odense C, Denmark.
Objective: To investigate the association between postoperative antibiotic prophylaxis and the risk of infections leading to implant explantation or hospitalization, with a follow-up of up to 12 years.
Study Design: Retrospective cohort study.
Setting: Tertiary medical institution.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!