Dentistry is confronted with the functional and aesthetic consequences that result from an increased prevalence of misaligned and discrepant dental occlusal relations in modern industrialised societies. Previous studies have indicated that a reduction in jaw size in response to softer and more heavily processed foods during and following the Industrial Revolution (1,700 CE to present) was an important factor in increased levels of poor dental occlusion. The functional demands placed on the masticatory system play a crucial role in jaw ontogenetic development; however, the way in which chewing behaviours changed in response to the consumption of softer foods during this period remains poorly understood. Here we show that eating more heavily processed food has radically transformed occlusal power stroke kinematics. Results of virtual 3D analysis of the dental macrowear patterns of molars in 104 individuals dating to the Industrial Revolution (1,700-1,900 CE), and 130 of their medieval and early post-medieval antecedents (1,100-1,700 CE) revealed changes in masticatory behaviour that occurred during the early stages of the transition towards eating more heavily processed foods. The industrial-era groups examined chewed with a reduced transverse component of jaw movement. These results show a diminished sequence of occlusal contacts indicating that a dental revolution has taken place in modern times, involving a dramatic shift in the way in which teeth occlude and wear during mastication. Molar macrowear suggests a close connection between progressive changes in chewing since the industrialization of food production and an increase in the prevalence of poor dental occlusion in modern societies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8673603PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261404PLOS

Publication Analysis

Top Keywords

heavily processed
12
dental revolution
8
processed foods
8
industrial revolution
8
poor dental
8
dental occlusion
8
eating heavily
8
dental
6
revolution association
4
association occlusion
4

Similar Publications

Many contaminants from scattered sources constantly endanger streams that flow through heavily inhabited areas, commercial districts, and industrial hubs. The responses of transplanted mussels in streams in active biomonitoring programs will reflect the dynamics of environmental stream conditions. This study evaluated the untargeted metabolomic and proteomic responses and free radical scavenging activities of transplanted mussels Sinanodonta woodiana in the Winongo Stream at three stations (S1, S2, S3) representing different pollution levels: low (S1), high (S2), and moderate (S3).

View Article and Find Full Text PDF

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

Background: The G protein‐coupled receptor GPR39 is heavily associated with the pathogenesis of neurologic disorders, including Alzheimer’s disease (AD) and related dementia (ADRD). Its dysregulation of zinc 2+ (Zn) processes triggers metallic dyshomeostasis, oxidative stress, neuroinflammation, microtubule destabilization, synaptic dysfunction, and tau phosphorylation—all hallmarks of neurodegeneration. Hence, pharmacologic modulation of GPR39 could offer an effective treatment against AD and ADRD.

View Article and Find Full Text PDF

Background: Collection, storage, and distribution of human fluid biospecimens in a scientifically rigorous manner is challenging. It requires physical space availability and robust infrastructure. Nonetheless, it is key to contribute to research in Alzheimer’s Disease and Related Disorders, including Frontotemporal Dementia (FTD).

View Article and Find Full Text PDF

Motivation: Accurately predicting the degradation capabilities of proteolysis-targeting chimeras (PROTACs) for given target proteins and E3 ligases is important for PROTAC design. The distinctive ternary structure of PROTACs presents a challenge to traditional drug-target interaction prediction methods, necessitating more innovative approaches. While current state-of-the-art (SOTA) methods using graph neural networks (GNNs) can discern the molecular structure of PROTACs and proteins, thus enabling the efficient prediction of PROTACs' degradation capabilities, they rely heavily on limited crystal structure data of the POI-PROTAC-E3 ternary complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!