Histone acetylation is involved in the regulation of seed germination. The transcription factor ABI5 plays an essential role in ABA- inhibited seed germination. However, the molecular mechanism of how ABI5 and histone acetylation coordinate to regulate gene expression during seed germination is still ambiguous. Here, we show that ENAP1 interacts with ABI5 and they co-bind to ABA responsive genes including ABI5 itself. The hypersensitivity to ABA of ENAP1ox seeds germination is recovered by the abi5 null mutation. ABA enhances H3K9Ac enrichment in the promoter regions as well as the transcription of target genes co-bound by ENAP1 and ABI5, which requires both ENAP1 and ABI5. ABI5 gene is directly regulated by ENAP1 and ABI5. In the enap1 deficient mutant, H3K9Ac enrichment and the binding activity of ABI5 in its own promoter region, along with ABI5 transcription and protein levels are all reduced; while in the abi5-1 mutant, the H3K9Ac enrichment and ENAP1 binding activity in ABI5 promoter are decreased, suggesting that ENAP1 and ABI5 function together to regulate ABI5- mediated positive feedback regulation. Overall, our research reveals a new molecular mechanism by which ENAP1 regulates H3K9 acetylation and mediates the positive feedback regulation of ABI5 to inhibit seed germination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8673607PMC
http://dx.doi.org/10.1371/journal.pgen.1009955DOI Listing

Publication Analysis

Top Keywords

seed germination
20
enap1 abi5
16
abi5
15
positive feedback
12
feedback regulation
12
h3k9ac enrichment
12
enap1
9
h3k9 acetylation
8
mediated positive
8
regulation abi5
8

Similar Publications

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.

View Article and Find Full Text PDF

Life History Strategies of the Winter Annual Plant (Asteraceae) in a Cold Desert Population.

Plants (Basel)

January 2025

Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou 730000, China.

Turcz. is a winter annual species of the Asteraceae family, distributed in sandy areas of northern China, and is crucial for wind avoidance and sand fixation. To understand the inter- and intra-annual population dynamics of in its cold desert habitats, we conducted long- and short-term demographic studies to investigate the timing of germination, seedling survival, soil seed bank and seed longevity of natural populations on the fringe of the Tengger Desert.

View Article and Find Full Text PDF

Alkaloid Profile, Anticholinesterase and Antioxidant Activities, and Sexual Propagation in (Amaryllidaceae).

Plants (Basel)

January 2025

Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), San Juan CP5400, Argentina.

, a recently described endemic species from southern Peru, belongs to the Amaryllidaceae family and is known for its diversity of alkaloids. Amaryllidoideae have been studied for their diverse biological activities, particularly for their properties in treating neurodegenerative diseases. This work examines the alkaloidal profile using GC-MS and UPLC-MS/MS of alkaloid-enriched extracts obtained from the leaves and bulbs of and their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes.

View Article and Find Full Text PDF

The mung bean ( (Linn) Wilczek.) is a major grain crop in China, but its yield is significantly impacted by weeds. However, no pre-emergence herbicides are registered for mung bean fields in the China Pesticide Information Network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!