Graphite-Based Bioinspired Piezoresistive Soft Strain Sensors with Performance Optimized for Low Strain Values.

ACS Appl Mater Interfaces

Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.

Published: December 2021

This paper presents the custom-made graphite-based piezoresistive strain sensor with gecko foot-inspired macroscopic features realized using a Velcro tape on Ecoflex substrate. The Velcro-based design provides an inexpensive and easy approach for the development of soft sensors with appreciable improvement in the performance even at low strain values. The sensor demonstrated excellent response (sensitivity of ∼16 500%, gauge factor of ∼3800) for 24% linear strain. The fabricated device showed a high gauge factor (>100) even for very low strain values. The sensor has been extensively characterized with a view to potentially use in soft robotics applications where high performance is needed at lower strain values. It is observed that the piezoresistive behavior of strain sensors is governed by several factors such as the supporting elastic medium, architecture of the strain sensor, material properties, strain rate and deformation sequence, and direction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c14228DOI Listing

Publication Analysis

Top Keywords

strain values
16
low strain
12
strain
10
strain sensors
8
strain sensor
8
values sensor
8
gauge factor
8
graphite-based bioinspired
4
bioinspired piezoresistive
4
piezoresistive soft
4

Similar Publications

Comparison of MIC Test Strip and reference broth microdilution method for amphotericin B and azoles susceptibility testing on wild type and non-wild type Aspergillus species.

Med Mycol

January 2025

Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.

This study was performed to evaluate whether the MIC Test Strip (MTS) quantitative assay for determining the minimum inhibitory concentration (MIC) correlated with the CLSI reference broth microdilution method (BMD) for antifungal susceptibility testing of wild-type and non-wild-type Aspergillus species isolated from cystic fibrosis patients against antifungal agents known to be usually effective against Aspergillus spp. This study was performed to assist in the decision-making process for possible deployment of the MTS assay for antimicrobial susceptibility testing of Aspergillus species into regional public health laboratories of Mycology due to difficulties in equipping the reference BMD methods in a laboratory routine. For this purpose, a set of 40 phenotypically diverse isolates (27 wild-type, 9 non-wild-type, and 4 species with reduced susceptibility to azoles and amphotericin B (AMB)) collected from clinical samples were tested.

View Article and Find Full Text PDF

An approach combining enzymatic inhibition and untargeted metabolomics through molecular networking was employed to search for human recombinant full-length protein tyrosine phosphatase 1B (PTP1 B) inhibitors from a collection of 66 mangrove-associated fungal taxa. This strategy prioritized two strains (IQ-1612, section , and IQ-1620, section ) for further studies. Chemical investigation of strain IQ-1612 resulted in the isolation of a new nonanolide derivative, roseoglobuloside A (1: ), along with two known metabolites (2: and 3: ), whereas strain IQ-1620 led to the isolation of four known naphtho-γ-pyrones and one known diketopiperazine (4: -8: ).

View Article and Find Full Text PDF

Introduction: The methicillin-resistant Staphylococcus aureus (MRSA) genome varies by geographical location. This study aims to determine the genomic characteristics of MRSA using whole-genome sequencing (WGS) data from medical centers in Mexico and to explore the associations between antimicrobial resistance genes and virulence factors.

Methods: This study included 27 clinical isolates collected from sterile sites at eight centers in Mexico in 2022 and 2023.

View Article and Find Full Text PDF

A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20 and RR4-56, NNCM2, P31 and X9-2-2 were 98.9, 91.

View Article and Find Full Text PDF

A novel aerobic marine bacterium, FRT2, isolated from surface water of a fishing port in Fukui, Japan, was characterised based on phylogenomic and phylogenetic analyses combined with classical phenotypic and chemotaxonomic characterisations. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FRT2 clustered with genus Leeuwenhoekiella. Closest relatives of FRT2 were Leeuwenhoekiella palythoae KMM 6264 and Leeuwenhoekiella nanhaiensis G18 with 16S rRNA gene sequence identities of 95.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!