Cancer remains the second most frequent cause of death in human populations worldwide, which has been reflected in the emphasis placed on management of risk from environmental chemicals considered to be potential human carcinogens. The formation of DNA adducts has been considered as one of the key events of cancer, and persistence and/or failure of repair of these adducts may lead to mutation, thus initiating cancer. Some chemical carcinogens can produce DNA adducts, and DNA adducts have been used as biomarkers of exposure. However, DNA adducts of various types are also produced endogenously in the course of normal metabolism. Since both endogenous physiological processes and exogenous exposure to xenobiotics can cause DNA adducts, the differentiation of the sources of DNA adducts can be highly informative for cancer risk assessment. This review summarizes a highly applicable methodology, termed stable isotope labeling and mass spectrometry (SILMS), that is superior to previous methods, as it not only provides absolute quantitation of DNA adducts but also differentiates the exogenous and endogenous origins of DNA adducts. SILMS uses stable isotope-labeled substances for exposure, followed by DNA adduct measurement with highly sensitive mass spectrometry. Herein, the utilities and advantage of SILMS have been demonstrated by the rich data sets generated over the last two decades in improving the risk assessment of chemicals with DNA adducts being induced by both endogenous and exogenous sources, such as formaldehyde, vinyl acetate, vinyl chloride, and ethylene oxide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.1c00212 | DOI Listing |
Dev Cogn Neurosci
January 2025
Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, United States; The Child Mind Institute, New York, NY, United States. Electronic address:
Reading difficulties and exposure to air pollution are both disproportionately high among youth living in economically disadvantaged contexts. Critically, variance in reading skills in youth living in higher socioeconomic status (SES) contexts largely derives from genetic factors, whereas environmental factors explain more of the variance in reading skills among youth living in lower SES contexts. Although reading research has focused closely on the psychosocial environment, little focus has been paid to the effects of the chemical environment.
View Article and Find Full Text PDFInt J Pharm
January 2025
Clinical Center for Tumor Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China. Electronic address:
The therapeutic outcomes of medications were restricted by the colonic mucosal barrier during the treatment of colorectal cancer (CRC). Micro/nanomotors can overcome the mucus barriers to reach deep colorectal tumors. In this study, we constructed a novel microsized PLGA-Pt micromotor (MM) driven by hydrogen peroxide (HO) to enhance drug delivery to the CRC tissues and achieve effective antitumor therapy.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea. Electronic address:
Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
Copper compounds with artificial metallo-nuclease (AMN) activity are mechanistically unique compared to established metallodrugs. Here, we describe the development of a new dinuclear copper AMN, Cu2-BPL-C6 (BPL-C6 = bis-1,10-phenanthroline-carbon-6), prepared using click chemistry that demonstrates site-specific DNA recognition with low micromolar cleavage activity. The BPL-C6 ligand was designed to force two redox-active copper centres-central for enhancing AMN activity-to bind DNA, via two phenanthroline ligands separated by an aliphatic linker.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!