Purpose: This study aimed to identify the barriers and facilitators related to the implementation of radical innovations in secondary healthcare.

Design/methodology/approach: A systematic review was conducted and presented in accordance with a PRISMA flowchart. The databases PubMed and Web of Science were searched for original publications in English between the 1st of January 2010 and 6th of November 2020. The level of radicalness was determined based on five characteristics of radical innovations. The level of evidence was classified according to the level of evidence scale of the University of Oxford. The Consolidated Framework for Implementation Research was used as a framework to classify the barriers and facilitators.

Findings: Based on the inclusion and exclusion criteria, nine publications were included, concerning six technological, two organizational and one treatment innovation. The main barriers for radical innovation implementation in secondary healthcare were lack of human, material and financial resources, and lack of integration and organizational readiness. The main facilitators included a supportive culture, sufficient training, education and knowledge, and recognition of the expected added value.

Originality/value: To our knowledge, this is the first systematic review examining the barriers and facilitators of radical innovation implementation in secondary healthcare. To ease radical innovation implementation, alternative performance systems may be helpful, including the following prerequisites: (1) Money, (2) Added value, (3) Timely knowledge and integration, (4) Culture, and (5) Human resources (MATCH). This study highlights the need for more high-level evidence studies in this area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10430798PMC
http://dx.doi.org/10.1108/JHOM-12-2020-0493DOI Listing

Publication Analysis

Top Keywords

radical innovation
16
innovation implementation
16
barriers facilitators
12
implementation secondary
12
secondary healthcare
12
facilitators radical
8
radical innovations
8
systematic review
8
level evidence
8
radical
6

Similar Publications

Alternative models of funding curiosity-driven research.

Proc Natl Acad Sci U S A

February 2025

Department of Psychology, University of Liverpool, Liverpool L69 7ZA, United Kingdom.

Funding of curiosity-driven science is the lifeblood of scientific and technological innovation. Various models of funding allocation became institutionalized in the 20th century, shaping the present landscape of research funding. There are numerous reasons for scientists to be dissatisfied with current funding schemes, including the imbalance between funding for curiosity-driven and mission-directed research, regional and country disparities, path-dependency of who gets funded, gender and race disparities, low inter-reviewer reliability, and the trade-off between the effort and time spent on writing or reviewing proposals and doing research.

View Article and Find Full Text PDF

Purpose We aimed to report an innovative single-site endoscopic surgery for soft tissue lesions performed at our center. Methods All patients who underwent soft tissue surgery were reviewed. All consecutive patients who underwent single-site endoscopic surgery between September 2019 and March 2024 were included in the study.

View Article and Find Full Text PDF

Heat-Assisted Direct Photopatterning of Small-Molecule OLED Emitters at the Micrometer Scale.

Small Methods

January 2025

Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.

A crucial step in fabricating full-color organic light-emitting diode (OLED) displays is patterning the emissive layer (EML). Traditional methods utilize thermal evaporation through metal masks. However, this limits the achievable resolution required for emerging microdisplay technologies.

View Article and Find Full Text PDF

Heterodimeric Photosensitizer as Radical Generators to Promoting Type I Photodynamic Conversion for Hypoxic Tumor Therapy.

Adv Mater

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China.

Photodynamic therapy (PDT) using traditional type II photosensitizers (PSs) has been limited in hypoxic tumors due to excessive oxygen consumption. The conversion from type II into a less oxygen-dependent type I PDT pathway has shown the potential to combat hypoxic tumors. Herein, the design of a heterodimeric PS, NBSSe, by conjugating a widely used type I PS NBS and a type II PS NBSe via molecular dimerization, achieving the aggregation-regulated efficient type I photodynamic conversion for the first time is reported.

View Article and Find Full Text PDF

Purpose: To develop and validate a prostate-specific membrane antigen (PSMA) PET/CT based multimodal deep learning model for predicting pathological lymph node invasion (LNI) in prostate cancer (PCa) patients identified as candidates for extended pelvic lymph node dissection (ePLND) by preoperative nomograms.

Methods: [Ga]Ga-PSMA-617 PET/CT scan of 116 eligible PCa patients (82 in the training cohort and 34 in the test cohort) who underwent radical prostatectomy with ePLND were analyzed in our study. The Med3D deep learning network was utilized to extract discriminative features from the entire prostate volume of interest on the PET/CT images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!