We report herein an unprecedented palladium-catalyzed cross-coupling reaction between mononitro-perylenediimide (PDI) and various arylstannanes. Optimized conditions developed with this Stille-type reaction allow the grafting of (hetero)aryls of various electronic nature in the bay region of PDIs. Moreover, we capitalized on the high selectivity of this cross-coupling through the desymmetrization of the dinitro-PDI substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1ob02291aDOI Listing

Publication Analysis

Top Keywords

investigation palladium-catalyzed
4
palladium-catalyzed stille-type
4
stille-type cross-coupling
4
cross-coupling nitroarenes
4
nitroarenes perylenediimide
4
perylenediimide series
4
series report
4
report unprecedented
4
unprecedented palladium-catalyzed
4
palladium-catalyzed cross-coupling
4

Similar Publications

Catalytic asymmetric C-N cross-coupling towards boron-stereogenic 3-amino-BODIPYs.

Nat Commun

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.

3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs.

View Article and Find Full Text PDF

A Pd (II)-catalyzed direct C3-(sp)-H alkenylation of heteroarenes using benzothiazole as a directing group was successfully achieved. A wide range of 2--alkylpyrroles undergo an oxidative coupling with a variety of acrylates to furnish highly regio- and chemoselective E-alkenylation products at the C3 position. An important intermediate complex has been isolated and characterized so as to have an insight into the mechanism.

View Article and Find Full Text PDF

An efficient palladium-catalyzed -allylic alkylation of pyrazoles and unactivated vinylcyclopropanes is demonstrated, affording various -alkyl pyrazoles in ≤99% yield. This protocol displays high atom economy, a broad range of substrates, and excellent regioselectivity and stereoselectivity. Late-stage modification of bioactive molecules, scaled-up reaction, and divergent derivatization documented the practicability of this methodology.

View Article and Find Full Text PDF

Palladium(ii)-catalyzed dehydrogenative coupling of aliphatic olefins would enable an efficient route to (conjugated) dienes, but remains scarcely investigated. Here, 2-hydroxypyridine (2-OH-pyridine) was found to be an effective ligand for Pd(ii) in the activation of vinylic C(sp)-H bonds. While reoxidation of Pd(0) is challenging in many catalytic oxidations, one can avoid in this reaction that the reoxidation becomes rate-limiting, even under ambient O pressure, by working in coordinating solvents.

View Article and Find Full Text PDF

π-π stacking assisted regioselectivity regulation in palladium-catalyzed cyclization reactions: a theoretical study.

RSC Adv

November 2024

Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China

The regulation of regioselectivity is an objective often pursued by organic chemists, and the comprehension of its mechanisms is crucial for devising efficient synthetic pathways. In this report, we conducted theoretical calculations to explore the regioselectivity regulatory mechanisms of two palladium-catalyzed cyclization reactions. In these cyclization reactions, manipulating the structural differences in the reaction substrates leads to the formation of distinct products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!