Pharmacokinetic drug interactions of integrase strand transfer inhibitors.

Curr Res Pharmacol Drug Discov

Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.

Published: August 2021

The integrase strand transfer inhibitor (INSTI)-containing regimens are currently considered as the first-line treatment of human immunodeficiency virus (HIV) infection. Although possessing a common mechanism of action to inhibit HIV integrase irreversibly to stop HIV replication cycle, the INSTIs, including raltegravir, elvitegravir, dolutegravir, and bictegravir, differ in pharmacokinetic characteristics. While raltegravir undergoes biotransformation by the UDP-glucuronosyltransferases (UGTs), elvitegravir is primarily metabolized by cytochrome P450 (CYP) 3A4 and co-formulated with cobicistat to increase its plasma exposure. The metabolism pathways of dolutegravir and bictegravir are similar, both including CYP3A and UGT1A1, and both agents are substrates to different drug transporters. Because of their differences in metabolism, INSTIs interact with other medications differently through CYP enzymes and transporters as inducers or inhibitors. These drug interactions may become an important consideration in the long-term clinical use because the life expectancy of people with HIV (PWH) approaches to that of the general population. Also, common geriatric challenges such as multimorbidity and polypharmacy have been increasingly recognized in PWH. This review provides a summary of pharmacokinetic interactions with INSTIs and future perspectives in implications of INSTI drug interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663927PMC
http://dx.doi.org/10.1016/j.crphar.2021.100044DOI Listing

Publication Analysis

Top Keywords

drug interactions
12
integrase strand
8
strand transfer
8
dolutegravir bictegravir
8
pharmacokinetic drug
4
interactions
4
interactions integrase
4
transfer inhibitors
4
inhibitors integrase
4
transfer inhibitor
4

Similar Publications

ChatGPT's Attitude, Knowledge, and Clinical Application in Geriatrics Practice and Education: Exploratory Observational Study.

JMIR Form Res

January 2025

Minneapolis VA Health Care System, Minneapolis, MN, United States.

Background: The increasing use of ChatGPT in clinical practice and medical education necessitates the evaluation of its reliability, particularly in geriatrics.

Objective: This study aimed to evaluate ChatGPT's trustworthiness in geriatrics through 3 distinct approaches: evaluating ChatGPT's geriatrics attitude, knowledge, and clinical application with 2 vignettes of geriatric syndromes (polypharmacy and falls).

Methods: We used the validated University of California, Los Angeles, geriatrics attitude and knowledge instruments to evaluate ChatGPT's geriatrics attitude and knowledge and compare its performance with that of medical students, residents, and geriatrics fellows from reported results in the literature.

View Article and Find Full Text PDF

The synthesis and characterization of benzo[d]thiazol-2-amine derivatives, which were prepared by reacting benzothiazole with para-aminobenzophenone in ethanol, supplemented with glacial acetic acid. Subsequently, compound (2) was synthesized from compound (1) using NaNO, HPO, and HNO in a water-based solvent, resulting in 2-hydroxy-1-naphthaldehyde. Another derivative, compound (3), was synthesized by reacting compound (1) with vanillin under similar conditions.

View Article and Find Full Text PDF

Clove oil obtained from Syzygium aromaticum (L.) is traditionally employed to treat inflammation associated with rheumatism, gastric disorders, and as an analgesic. Chemo-herbal combinations are known to have potent anti-inflammatory and analgesic effects, while mitigating the drug related side effects.

View Article and Find Full Text PDF

Establishment of nasal and olfactory epithelium organoids for unveiling mechanism of tissue regeneration and pathogenesis of nasal diseases.

Cell Mol Life Sci

January 2025

ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.

Organoid is an ideal in vitro model with cellular heterogeneity and genetic stability when passaging. Currently, organoids are exploited as new tools in a variety of preclinical researches and applications for disease modeling, drug screening, host-microbial interactions, and regenerative therapy. Advances have been made in the establishment of nasal and olfactory epithelium organoids that are used to investigate the pathogenesis of smell-related diseases and cellular/molecular mechanism underlying the regeneration of olfactory epithelium.

View Article and Find Full Text PDF

Background: Hyperphosphorylated tau (pTau) in Alzheimer's disease (AD) brain tissue is a complex mix of multiple tau species that are variably phosphorylated on up to 55 epitopes. Emerging studies suggest that phosphorylation of specific epitopes may alter the role of tau. The role of specific pTau species can be explored through protein interaction ("interactome") studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!