Delivering glial cell line-derived neurotrophic factor (GDNF) to the brain is a potential treatment for Parkinson's Disease (PD). Here we use an implantable encapsulated cell technology that uses modified human clonal ARPE-19 ​cells to deliver of GDNF to the brain. I studies demonstrated sustained delivery of GDNF to the rat striatum over 6 months. Anatomical benefits and behavioral efficacy were shown in 6-OHDA lesioned rats where nigral dopaminergic neurons were preserved in neuroprotection studies and dopaminergic fibers were restored in neurorecovery studies. When larger, clinical-sized devices were implanted for 3 months into the putamen of Göttingen minipigs, GDNF was widely distributed throughout the putamen and caudate producing a significant upregulation of tyrosine hydroxylase immunohistochemistry. These results are the first to provide clear evidence that implantation of encapsulated GDNF-secreting cells deliver efficacious and biologically relevant amounts of GDNF in a sustained and targeted manner that is scalable to treat the large putamen in patients with Parkinson's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663965PMC
http://dx.doi.org/10.1016/j.crphar.2020.04.001DOI Listing

Publication Analysis

Top Keywords

gdnf brain
8
parkinson's disease
8
gdnf
6
long-term stable
4
stable targeted
4
targeted biodelivery
4
biodelivery efficacy
4
efficacy gdnf
4
gdnf encapsulated
4
encapsulated cells
4

Similar Publications

Neurons derived from induced pluripotent stem cells (h-iPSC-Ns) provide an invaluable model for studying the physiological aspects of human neuronal development under healthy and pathological conditions. However, multiple studies have demonstrated that h-iPSC-Ns exhibit a high degree of functional and epigenetic diversity. Due to the imprecise characterization and significant variation among the currently available maturation protocols, it is essential to establish a set of criteria to standardize models and accurately characterize and define the developmental properties of human neurons derived from iPSCs.

View Article and Find Full Text PDF

Background: Klotho and neurotrophic factors, including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF), have been shown to play a role in cognitive functions. However, these molecules have not been investigated in bipolar disorder simultaneously to assess the interactions among them and their relationships with cognitive functions. This study investigated the relationships among cognitive function, klotho, and neurotrophic factors in patients with bipolar disorder in the remission period.

View Article and Find Full Text PDF

Exploring the Different Impacts of Ketamine on Neurotrophic Factors and Inflammatory Parameters in a Cecal Ligation and Puncture-Induced Sepsis Model.

Neurotox Res

January 2025

Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.

Given ketamine's conflicting impacts on the central nervous system, investigating its effects within an inflammatory context becomes crucial. This study aimed to assess the impact of varying ketamine doses on neurotrophin and inflammatory cytokine levels within the brains of rats submitted to the sepsis model. Wistar rats were submitted to the cecal ligation and puncture (CLP) model of sepsis.

View Article and Find Full Text PDF

Background: Perioperative Neurocognitive Disorders (PND) are associated withanesthesia and surgery, especially in the elderly. Astrocyte activation in old mice correlates with PND development. These cells can switch to a pro-inflammatory or an anti-inflammatory phenotype, regulated by the STAT3 pathway.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!