Towards CRISPR powered electrochemical sensing for smart diagnostics.

Curr Opin Electrochem

Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India.

Published: December 2021

Even though global health has been steadily improved, the global disease burden associated with communicable and non-communicable diseases extensively increased healthcare expenditure. The present COVID-19 pandemic scenario has again ascertained the importance of clinical diagnostics as a basis to make life-saving decisions. In this context, there is a need for developing next-generation integrated smart real-time responsive biosensors with high selectivity and sensitivity. The emergence of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas biosensing systems has shown remarkable potential for developing next-generation biosensors. CRISPR/Cas integrated electrochemical biosensors (E-CRISPR) stands out with excellent properties. In this opinionated review, we illustrate the rapidly evolving applications for E-CRISPR-integrated detection systems towards biosensing and the future scope associated with E-CRISPR based diagnostics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660062PMC
http://dx.doi.org/10.1016/j.coelec.2021.100829DOI Listing

Publication Analysis

Top Keywords

developing next-generation
8
crispr powered
4
powered electrochemical
4
electrochemical sensing
4
sensing smart
4
smart diagnostics
4
diagnostics global
4
global health
4
health steadily
4
steadily improved
4

Similar Publications

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

Clinical Microbiology: where do we stand?

Front Antibiot

June 2024

Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece.

Clinical Microbiology has developed during the last 100 years, simultaneous with the discovery of microorganisms as causes of infections. Globalization and One Health determine present needs whereas molecular biology, automation, artificial intelligence, and bioinformatics are new tools that characterize the new developments in the field.

View Article and Find Full Text PDF

Combination of Broad Light-Absorption CuS with S,C,N-TiO: Assessment of Photocatalytic Performance in Nitrogen Fixation Reaction.

Inorg Chem

January 2025

Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran.

In the field of solar energy storage, photocatalytic ammonia production is a next-generation technology. The rapid recombination of charges and insignificant utilization of the sunlight spectrum are bottlenecks of effective photocatalytic N fixation. The introduction of impurities in the crystal lattice and the development of heterojunctions could effectively segregate carriers and improve the solar-light-harvesting capability, which can boost NH generation.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries has been regarded as one of the most promising next-generation energy storage systems due to their high theoretical energy density. However, the practical application of Li-S batteries is still hindered by the unstable cathode-electrolyte interphase and the early passivation of charge product (Li2S), leading to poor cycling stability and low S utilization. Herein, we propose an electrolyte engineering strategy using highly solvating hexamethylphosphoramide (HMPA) as a co-solvent to elucidate the dissociation-precipitation chemistry of lithium polysulfides (LiPSs).

View Article and Find Full Text PDF

Low-cost and safe vaccines are needed to fill the vaccine inequity gap for future pandemics. Pichia pastoris is an ideal expression system for recombinant protein production due to its cost-effective and easy-to-scale-up process. Here, we developed a next-generation SARS-CoV2 Omicron BA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!