Effect of long-term ageing on graphene oxide: structure and thermal decomposition.

R Soc Open Sci

Army Engineering University of People's Liberation Army, Shijiazhuang Campus, No. 97 Heping West Road of Shijiazhuang, Shijiazhuang, Hebei province 050003, People's Republic of China.

Published: December 2021

After long-term ageing, the structure of graphene oxide prepared by the modified Hummers method changed. Because of the desorption of oxygen-containing functional groups, the C/O ratio of graphene oxide increased from 1.96 to 2.76. However, the average interlayer distance decreased from 0.660 to 0.567 nm. The content of -CH- and -CH- decreased; however, the type of oxygen-containing functional groups did not change. Moreover, / increased from 0.87 to 0.92, indicating that the defect density decreased because of desorbing oxygen functional groups after ageing. When the temperature exceeded 60°C, CO produced by decomposing graphene oxide was detected. The thermal decomposition changed after ageing. The decomposition peak temperature decreased from 216°C to 195°C. The CO amount produced remained almost unchanged; however, the amount of CO, SO and HO decreased. After ageing, the apparent activation energy of graphene oxide decreased from 150 to 134 kJ mol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652269PMC
http://dx.doi.org/10.1098/rsos.202309DOI Listing

Publication Analysis

Top Keywords

graphene oxide
20
functional groups
12
long-term ageing
8
thermal decomposition
8
oxygen-containing functional
8
decreased
6
graphene
5
oxide
5
ageing graphene
4
oxide structure
4

Similar Publications

Unveiling the drug delivery mechanism of graphene oxide dots at the atomic scale.

J Control Release

January 2025

Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, Università degli Studi di Milano-Bicocca, Italy. Electronic address:

Graphene oxide (GO) is an amphiphilic and versatile graphene-based nanomaterial that is extremely promising for targeted drug delivery, which aims to administer drugs in a spatially and temporally controlled manner. A typical GO nanocarrier features a polyethylene glycol coating and conjugation to an active targeting ligand. However, it is challenging to accurately model GO dots, because of their intrinsically complex and not unique structure.

View Article and Find Full Text PDF

Intimately coupled photocatalytic biodegradation (ICPB) has been recently developed as an efficient wastewater treatment technique, particularly for removing persistent organic pollutants. However, photocatalyst/biofilm interaction in terms of photoelectron transfer and its effect on the overall performance of ICPB has not been explored. To investigate these points, interface-engineered composites of bismuth vanadate and reduced graphene oxide with low degree (BiVO/rGO-LC) and high degree of their contact (BiVO/rGO-HC) were fabricated and applied for ICPB.

View Article and Find Full Text PDF

Reduced graphene oxide membrane with small nanosheets for efficient and ultrafast removal of both microplastics and small molecules.

J Hazard Mater

January 2025

Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Electronic address:

The clogging of sieving pores due to the complex sewage system of mixed molecules and nanoparticles of different scales is a difficulty in the membrane-based separation process. When the holes are reduced to the point where they can repel small molecules in the contaminants, large-molecule contaminants can adsorb to the holes and decrease the permeability. A similar question remains in new promising graphene oxide (GO) membranes.

View Article and Find Full Text PDF

In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs.

View Article and Find Full Text PDF

High-Strength and Rapidly Degradable Nanocomposite Yarns from Recycled Waste Poly(glycolic acid) (PGA).

Polymers (Basel)

January 2025

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.

Poly(glycolic acid) (PGA) is a rapidly degradable polymer mainly used in medical applications, attributed to its relatively high cost. Reducing its price will boost its utilization in a wider range of application fields, such as gas barriers and shale gas extraction. This article presents a strategy that utilizes recycled PGA as a raw material alongside typical carbon nanomaterials, such as graphene oxide nanosheets (GO) and carbon nanotubes (CNTs), to produce low-cost, fully degradable yarns via electrospinning and twisting techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!