Pharmacological neuroenhancement refers to the non-medical use of prescription drugs, alcohol, illegal drugs, or the so-called soft enhancers for the purpose of improving cognition, mood, pro-social behavior, or work and academic performance. This phenomenon is undoubtedly more frequent than previously supposed especially amongst university students. The aim of the present paper was to carefully review and comment on the available literature on neuroenhancement, according to Prisma guidelines. The results showed a great use of all prescribed drugs (benzodiazepines, antidepressants, antipsychotics, nootropic compounds, and especially stimulants) as neuroenhancers amongst healthy subjects, although probably the real prevalence is underestimated. The use of illicit drugs and soft enhancers is similarly quite common. Data on the improvement of cognition by other compounds, such as oxytocin and pheromones, or non-pharmacological techniques, specifically deep brain stimulation and transcranial magnetic stimulation, are still limited. In any case, if it is true that human beings are embedded by the desire to overcome the limits of their intrinsic nature, neuroenhancement practices put into question the concept of authenticity. Therefore, the problem appears quite complex and requires to be deepened and analyzed with no prejudice, although within an ethical conceptual frame.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629054 | PMC |
http://dx.doi.org/10.36131/cnfioritieditore20210303 | DOI Listing |
Sci Rep
December 2024
Department of Applied Mathematics, Faculty of Mathematical Science, Ferdowsi University of Mashhad, Mashhad, Iran.
This study presents a web application for predicting cardiovascular disease (CVD) and hypertension (HTN) among mine workers using machine learning (ML) techniques. The dataset, collected from 699 participants at the Gol-Gohar mine in Iran between 2016 and 2020, includes demographic, occupational, lifestyle, and medical information. After preprocessing and feature engineering, the Random Forest algorithm was identified as the best-performing model, achieving 99% accuracy for HTN prediction and 97% for CVD, outperforming other algorithms such as Logistic Regression and Support Vector Machines.
View Article and Find Full Text PDFCureus
November 2024
Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, Bhopal, IND.
Hepatic mesenchymal hamartoma (HMH) is an uncommon, benign liver tumor predominantly affecting children under three years of age. It is characterized histologically by disorganized mesenchymal stroma, abnormal bile ducts, blood vessels, and hepatocytes. HMH can present as a large cystic mass, a solid mass, or a combination of both.
View Article and Find Full Text PDFBMC Cancer
December 2024
Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany.
Background: Soft-tissue sarcomas are rare tumors of the soft tissue. Recent diagnostic studies mainly dealt with conventional image analysis and included only a few cases. This study investigated whether low- and high-proliferative soft tissue sarcomas can be differentiated using conventional imaging and radiomics features on MRI.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
December 2024
University of Houston, Department of Physics, Houston, Texas, United States.
Purpose: Photon counting detectors offer promising advancements in computed tomography (CT) imaging by enabling the quantification and three-dimensional imaging of contrast agents and tissue types through simultaneous multi-energy projections from broad X-ray spectra. However, the accuracy of these decomposition methods hinges on precise composite spectral attenuation values that one must reconstruct from spectral micro-CT. Errors in such estimations could be due to effects such as beam hardening, object scatter, or detector sensor-related spectral distortions such as fluorescence.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!