Non-covalent complexes (SPIF/SSPS) of soy protein isolate fibrils (SPIF) and soy soluble polysaccharides (SSPS) were fabricated and used to stabilize oil-in-water (O/W) emulsions. FT-IR spectroscopy and zeta potential results demonstrated that the interactions between SPIF and SSPS mainly include hydrogen bonding and electrostatic interactions. The presence of SSPS decreased the particle size and surface hydrophobicity of SPIF, resulting in a decrease and redshift of the fluorescence intensity. During the interfacial adsorption process, SPIF/SSPS complexes had lower diffusion and penetration rates compared with pure SPIF because of their hydrophilic region, but the molecular reorganization rate increased. Emulsions stabilized with the SPIF/SSPS complex at 5 : 5 (, 1 : 1) ratio had both an excellent emulsifying activity index (EAI) of 26.17 m g and an excellent emulsifying stability index (ESI) of 93.01%, as well as the smallest emulsion droplet particle size of 1.74 μm. Meanwhile, no flocculation was observed in this emulsion which is attributed to the sufficient steric stabilization provided by the hydrophilic SSPS. After three weeks of storage, there was no phase separation observed in the emulsions stabilized by SPIF/SSPS complexes in 5 : 4 and 5 : 5 ratios and the Turbiscan stability indices were 17.86 and 15.14, respectively, much lower than the other emulsion formulations tested.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1fo01604kDOI Listing

Publication Analysis

Top Keywords

non-covalent complexes
8
soy protein
8
protein isolate
8
isolate fibrils
8
soy soluble
8
soluble polysaccharides
8
particle size
8
spif/ssps complexes
8
emulsions stabilized
8
stabilized spif/ssps
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!