The cell-membrane permeabilities of a cell type toward water () and cryoprotective agents () provide crucial cellular information for achieving optimal cryopreservation in the biobanking industry. In this work, cell membrane permeability was successfully determined directly visualizing the transient profile of the cell volume change in response to a sudden osmotic gradient instantaneously applied between the intracellular and extracellular environments. A new micro-vortex system was developed to virtually trap the cells of interest in flow-driven hydrodynamic circulation passively formed at the expansion region in a microfluidic channel, where trapped cells remain in suspension and flow with the streamline of the localized vortex, involving no physical contact between cells and the device structure; furthermore, this supports a pragmatic assumption of 100% sphericity and allows for the calculation of the active surface area of the cell membrane for estimating the actual cell volume from two-dimensional images. For an acute T-cell lymphoma cell line (Jurkat), moderately higher values ( = 0.34 μm min atm for a binary system, and = 0.16 μm min atm and = 0.55 × 10 cm min for a ternary system) were measured than those obtained from prior methods utilizing contact-based cell-trapping techniques, manifesting the influence of physical contact on accuracy during the determination of cell membrane permeability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1lc00846c | DOI Listing |
Adv Sci (Weinh)
January 2025
Aramco Americas, Boston Research Center, Cambridge, MA, 02139, USA.
Membrane-based gas separation provides an energy-efficient approach for the simultaneous CO and HS removal from sour natural gas. The fluorinated polyimide (PI) membranes exhibited a promising balance between permeability and permselectivity for sour natural gas separation. To further improve the separation efficiency of fluorinated PI membranes, a melamine-copolymerization synthetic approach is devised that aims to incorporate melamine motifs with high sour gas affinity into the structure of the PI membranes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States.
The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with -phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.
View Article and Find Full Text PDFMol Biochem Parasitol
January 2025
Post-graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza - CE, Brazil; Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio - CE, Brazil; Northeast Network of Biotechnology (RENORBIO), State University of Ceará (UECE), Fortaleza - CE, Brazil.
Globally, an estimated 1 billion people reside in endemic areas, and over 12 million individuals are infected with leishmaniasis. Despite its prevalence, leishmaniasis continues to be a neglected disease, mainly affecting underdeveloped countries. In Brazil, the available treatments are pentavalent antimonials and Amphotericin B, which are outdated, toxic, require prolonged parenteral administration and have limited efficacy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
Mixed matrix membranes (MMMs) can significantly improve gas separation performance, but the type and state of the filler in the membrane matrix are key indicators for the development of MMMs. Therefore, in this work, 6FDA-DAM/ODA (1:1), metal-organic frameworks (MOFs) with different particle sizes (UiO-66 and UiO-66-NH) were synthesized, and then MOFs were doped into 6FDA-DAM/ODA to prepare MMMs. The effects of the dopant materials and their particle sizes on the gas separation performance of the membranes were investigated by testing the permeability of the MMMs to H, CO, CH, and N.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!