Uranium-tolerant soil bacterium Chryseobacterium sp. strain PMSZPI moved over solid agar surfaces by gliding motility thereby forming spreading colonies which is a hallmark of members of Bacteroidetes phylum. PMSZPI genome harboured orthologs of all the gld and spr genes considered as core bacteroidetes gliding motility genes of which gldK, gldL, gldM and gldN were co-transcribed. Here, we present the intriguing interplay between gliding motility and cellular organization in PMSZPI spreading colonies. While nutrient deficiency enhanced colony spreading, high agar concentrations and presence of motility inhibitor like 5-hydroxyindole reduced the spreading. A detailed in situ structural analysis of spreading colonies revealed closely packed cells forming multiple layers at centre of colony while the edges showed clusters of cells periodically arranged in hexagonal lattices interconnected with each other. The cell migration within colony was visualized as branched structures wherein the cells were buried within extracellular matrix. PMSZPI colonies exhibited strong iridescence possibly as a result of periodicity within the cell population achieved through gliding motility. Presence of uranium reduced motility and iridescence and induced biofilm formation. The coordinated study of gliding motility and iridescence apparently influenced by uranium provides unique insights into the lifestyle of PMSZPI residing in uranium enriched environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1758-2229.13034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!