Disrupted skin barrier, one of the severe attributes of inflammatory skin diseases, is caused by lower content and pathological changes of lipids in the uppermost skin layer-stratum corneum (SC). Restoring skin barrier with native skin lipids, especially ceramides (Cers), appears to be a promising therapy with minimum side effects. For testing the efficiency of these formulations, suitable in vitro models of the skin with disrupted barriers are needed. For the similarity with the human tissue, our models were based on the pig ear skin. Three different ways of skin barrier disruption were tested and compared: tape stripping, lipid extraction with organic solvents, and barrier disruption by sodium lauryl sulfate. The level of barrier disruption was investigated by permeation studies, and parameters of each method were modified to reach significant changes between the non-disrupted skin and our model. Fourier transform infrared (FTIR) spectroscopy was employed to elucidate the changes of the skin permeability on the molecular scale. Further, the potential of the developed models to be restored by skin barrier repairing agents was evaluated by the same techniques. We observed a significant decrease in permeation characteristics through our in vitro models treated with the lipid mixtures compared to the untreated damaged skin, which implied that the skin barrier was substantially restored. Taken together, the results suggest that our in vitro models are suitable for the screening of potential barrier repairing agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-021-02154-z | DOI Listing |
Actas Dermosifiliogr
January 2025
Servicio de Dermatología, Hospital Infantil Niño Jesús, Madrid, España. Electronic address:
Ichthyoses are a heterogeneous group of diseases sharing symptoms and a common etiopathogenic mechanism. Clinically, these diseases are characterized by the presence of erythema and variable degrees of skin thickening and desquamation. Although the affected area, severity, and molecular substrate are very variable, they are all signs of a disruption of the barrier formed during epidermal differentiation.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..
Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.
View Article and Find Full Text PDFSkinmed
January 2025
Baylor Scott & White University Hospital, Dallas, TX.
Filsuvez (birch triterpenes) topical gel received approval in 2023 for the treatment of epidermolysis bullosa (EB) in pediatric patients (aged ≥6 months) and adults. It promotes wound healing by modulating inflammation, encouraging new tissue formation, and maintaining the skin barrier. In a randomized, double-blind, controlled, parallel-group, phase III trial (EASE, NCT03068780), 223 patients were randomly assigned to two groups: the first group received treatment with birch triterpenes topical gel (study gel, n = 109), and the second group received treatment with vehicle gel (n = 114).
View Article and Find Full Text PDFKorean J Fam Med
January 2025
Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences Bathinda (Punjab), Bathinda, India.
Background: Menstrual hygiene is crucial to a woman's physical, social, and mental well-being. The menstrual cup offers a safe and effective solution but still requires wider adoption. This study aims to assess awareness, practices, and barriers regarding the use of menstrual cups among women of reproductive age.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
Chirality-induced spin selectivity (CISS) generates giant spin polarization in transport through chiral molecules, paving the way for novel spintronic devices and enantiomer separation. Unlike conventional transport, CISS magnetoresistance (MR) violates Onsager's reciprocal relation, exhibiting significant resistance changes when reversing electrode magnetization at zero bias. However, its underlying mechanism remains unresolved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!