Zotepine is an atypical antipsychotic drug used in the treatment of schizophrenia. However, its poor dissolution properties limit its therapeutic efficacy. In this investigation, a series of nanosuspension-containing zotepine were prepared employing media milling method with an aim to improve its dissolution properties and oral bioavailability. Briefly, Box-Behnken design was applied to investigate the influence of various independent variables such as X- amount of stabilizer, X- amount of milling agent, and X- milling time on the performance of the formulation. Dissolution studies revealed enhancement of dissolution rate as compared to pure drug. Solid state characterization (DSC, PXRD, and SEM) studies demonstrated no polymorphic changes in drug after lyophilization of media-milled nanosuspension. In vivo pharmacokinetic studies of lyophilized nanosuspension was carried out in rat and the results exhibited significant improvement in C and AUC, about 450.0 and 287.45%, respectively, suggesting amelioration in oral bioavailability by 2.87-fold higher as compared to pure drug. Accelerated stability studies of the optimized lyophilized formulation at 40°C and 75% RH suggested stability of the nanocrystals for at least a 6-month period. The obtained nanocrystals successfully showed dissolution enhancement and improved oral bioavailability of poorly water-soluble drug, zotepine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-021-02172-x | DOI Listing |
Anal Bioanal Chem
January 2025
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Insulin bound with ligand molecules can improve its bioavailability in oral formulations. In this work, the interactions between insulin and bile acids of taurocholic acid (TCA) and glycocholic acid (GCA) are characterized using different mass spectrometry (MS) methods. Electrospray (ESI)-MS analysis revealed that GCA and TCA could interact with insulin individually or together through non-covalent bonds, and the products included mGCA-insulin, nTCA-insulin, and mGCA-nTCA-insulin complexes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Life Sciences, Henan University, Kaifeng, Henan 475001, China.
Melanoma, a highly aggressive skin cancer, poses significant challenges due to its rapid metastases and high mortality rates. While metformin (Met), a first-line medication for type 2 diabetes, has shown promise in inhibiting tumor growth and metastases, its clinical efficacy in cancer therapy is limited by low bioavailability, short half-life, and gastrointestinal adverse reactions associated with oral administration. In this study, we developed a hollow mesoporous polydopamine nanocomposite (HMPDA-PEG@Met@AB) coloaded with Met and ammonia borane (AB), designed to enable a combined gas-assisted, photothermal, and chemotherapeutic approach for melanoma treatment.
View Article and Find Full Text PDFGlycation-induced oxidative stress underlies the numerous metabolic ravages of Alzheimer's disease (AD). Reduced glutathione levels in AD lead to increased oxidative stress, including glycation-induced pathology. Previously, we showed that the accumulation of reactive 1,2-dicarbonyls such as methylglyoxal, the major precursor of non-enzymatic glycation products, was reduced by the increased function of GSH-dependent glyoxalase-1 enzyme in the brain.
View Article and Find Full Text PDFRSC Adv
January 2025
LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal
Despite significant strides in improving cancer survival rates, the global cancer burden remains substantial, with an anticipated rise in new cases. Immune checkpoints, key regulators of immune responses, play a crucial role in cancer evasion mechanisms. The discovery of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 has revolutionized cancer treatment, with monoclonal antibodies (mAbs) becoming widely prescribed.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; Shantou Key Laboratory of Marine Microbial Resources and Interactions with Environment, Shantou University, Shantou 515063, China. Electronic address:
Oxidative stress, caused by excessive production of reactive oxygen species (ROS), plays a crucial role in the occurrence and development of various diseases. Monascin can scavenge ROS and alleviate oxidative stress but with a low fermentation rate and bioavailability. Here, we optimized the fermentation process to increase the production of monascin (508.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!