There is evidence of reduced SARS-CoV-2 vaccine effectiveness in patients with hematological malignancies. We hypothesized that tumor and treatment-related immunosuppression can be depicted in peripheral blood, and that immune profiling prior to vaccination can help predict immunogenicity. We performed a comprehensive immunological characterization of 83 hematological patients before vaccination and measured IgM, IgG, and IgA antibody response to four viral antigens at day +7 after second-dose COVID-19 vaccination using multidimensional and computational flow cytometry. Health care practitioners of similar age were the control group (n = 102). Forty-four out of 59 immune cell types were significantly altered in patients; those with monoclonal gammopathies showed greater immunosuppression than patients with B-cell disorders and Hodgkin lymphoma. Immune dysregulation emerged before treatment, peaked while on-therapy, and did not return to normalcy after stopping treatment. We identified an immunotype that was significantly associated with poor antibody response and uncovered that the frequency of neutrophils, classical monocytes, CD4, and CD8 effector memory CD127low T cells, as well as naive CD21+ and IgM+D+ memory B cells, were independently associated with immunogenicity. Thus, we provide novel immune biomarkers to predict COVID-19 vaccine effectiveness in hematological patients, which are complementary to treatment-related factors and may help tailoring possible vaccine boosters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669666 | PMC |
http://dx.doi.org/10.1038/s41408-021-00594-1 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.
Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.
Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.
PLoS Negl Trop Dis
January 2025
Sustainable Sciences Institute, Managua, Nicaragua.
Background: Dengue virus, a major global health threat, consists of four serotypes (DENV1-4) that cause a range of clinical manifestations from mild to severe and potentially fatal disease.
Methods: This study, based on 19 years of data from the Pediatric Dengue Cohort Study and Pediatric Dengue Hospital-based Study in Managua, Nicaragua, investigates the relationship of serotype and immune status with dengue severity. Dengue cases were confirmed by molecular, serological, and/or virological methods, and study participants 6 months to 17 years old were followed during their hospital stay or as ambulatory patients.
PLoS One
January 2025
Foot and Mouth Disease Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria.
The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.
View Article and Find Full Text PDFJ Acquir Immune Defic Syndr
December 2024
ACS Nano
January 2025
College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.
Immunocompromised populations, including cancer patients, elderly individuals, and those with chronic diseases, are the primary targets of superbugs. Traditional vaccines are less effective due to insufficient or impaired immune cells. Inspired by the "vanguard" effect of neutrophils (NE) during natural infection, this project leverages the ability of NE to initiate the NETosis program to recruit monocytes and DC cells, designing vaccines that can rapidly recruit immune cells and enhance the immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!