G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome and are important therapeutic targets. During the last decade, the number of atomic-resolution structures of GPCRs has increased rapidly, providing insights into drug binding at the molecular level. These breakthroughs have created excitement regarding the potential of using structural information in ligand design and initiated a new era of rational drug discovery for GPCRs. The molecular docking method is now widely applied to model the three-dimensional structures of GPCR-ligand complexes and screen for chemical probes in large compound libraries. In this review article, we first summarize the current structural coverage of the GPCR superfamily and the understanding of receptor-ligand interactions at atomic resolution. We then present the general workflow of structure-based virtual screening and strategies to discover GPCR ligands in chemical libraries. We assess the state of the art of this research field by summarizing prospective applications of virtual screening based on experimental structures. Strategies to identify compounds with specific efficacy and selectivity profiles are discussed, illustrating the opportunities and limitations of the molecular docking method. Our overview shows that structure-based virtual screening can discover novel leads and will be essential in pursuing the next generation of GPCR drugs. SIGNIFICANCE STATEMENT: Extraordinary advances in the structural biology of G protein-coupled receptors have revealed the molecular details of ligand recognition by this large family of therapeutic targets, providing novel avenues for rational drug design. Structure-based docking is an efficient computational approach to identify novel chemical probes from large compound libraries, which has the potential to accelerate the development of drug candidates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/pharmrev.120.000246 | DOI Listing |
Clin Oral Investig
January 2025
Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074, Aachen, Germany.
Objectives: In advanced stages of osteoradionecrosis, medication-related osteonecrosis of the jaw, and osteomyelitis, a resection of sections of the mandible may be unavoidable. The determination of adequate bony resection margins is a fundamental problem because bony resection margins cannot be secured intraoperatively. Single-photon emission computed tomography (SPECT-CT) is more accurate than conventional imaging techniques in detecting inflammatory jaw pathologies.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China.
To determine the diagnostic performance of dual-energy CT (DECT) virtual noncalcium (VNCa) technique in the detection of bone marrow lesions (BMLs) in knee osteoarthritis, and further analyze the correlation between the severity of BMLs on VNCa image and the degree of knee pain. 23 consecutive patients with clinically diagnosed knee osteoarthritis were underwent DECT and 3.0T MRI between August 2017 and November 2018.
View Article and Find Full Text PDFMol Immunol
January 2025
Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Master Program of Pharmaceutical Manufacture, College of Pharmacy, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan. Electronic address:
The immunoglobulin E (IgE) receptor FcεRI (Fc epsilon RI) plays a crucial role in allergic reactions. Recent studies have indicated that the interaction between FcεRIβ and the downstream protein phospholipase C beta 3 (PLCβ3) leads to the production of inflammatory cytokines. The aim of this study was to develop small molecules that inhibit the protein-protein interactions between FcεRIβ and PLCβ3 to treat allergic inflammation.
View Article and Find Full Text PDFJ Med Virol
February 2025
Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China.
Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics.
View Article and Find Full Text PDFChem Biodivers
January 2025
GRT College of Education, Department of Pharmaceutical Chemistry, Tiruttani 631209, Tiruttani, INDIA.
Maternal Embryonic Leucine Zipper Kinase (MELK), a pivotal signaling protein, plays a crucial role in various physiological processes such as cell growth, survival, and differentiation. There is currently a growing interest in MELK as a promising therapeutic target for multiple cancers, including triple-negative breast cancer (TNBC). Exploring MELK as a target offers a prospective strategy to impede cancer progression and enhance the efficacy of conventional anticancer therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!