A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Raman Imaging as a powerful tool to elucidate chemical processes in a matrix: Medicated chewing gums with nicotine. | LitMetric

Raman Imaging as a powerful tool to elucidate chemical processes in a matrix: Medicated chewing gums with nicotine.

J Pharm Biomed Anal

Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark. Electronic address:

Published: February 2022

Extruded medicated chewing gum is a convenient but complex drug delivery system. Description of gum ingredient distribution and interactions in literature is sparse, but fundamental in product characterization and stability prediction. Although Raman spectroscopy has been used for such characterization of numerous dosage forms, its applicability to medicated chewing gum has not been studied until now. The objective was to investigate the applicability of confocal Raman imaging on chewing gum for identification and distribution of excipients and the model drug nicotine, including changes occurring during shelf life. A sample preparation protocol was composed to present an even surface of a gum cross section without altering the gum matrix texture. High-resolution Raman maps were obtained by Non Negative Least Squares (NNLS) analysis for a reference gum and gums stored for 6 months at mild (25 °C/60% RH) and accelerated (40 °C/75% RH) conditions. Additional Empty Modelling™ analysis confirmed the results of NNLS. The NNLS analysis located nicotine and the following excipients: gum base, calcium carbonate, sorbitol, xylitol, sodium carbonate, sodium bicarbonate and talc in distinct domains of the reference sample. Changes of the sample stored at accelerated conditions was discovered as sodium carbonate was not observed in this sample. Additionally, stereo light microscopy showed changes in product appearance and high-performance liquid chromatography confirmed formation of the oxidation product nicotine-1'-N-oxide in this sample. The gum formulation and its ingredients displayed characteristic Raman spectra, proving Raman imaging as a useful method for characterizing medicated chewing gums, including changes occurring during stability testing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2021.114519DOI Listing

Publication Analysis

Top Keywords

medicated chewing
16
raman imaging
12
chewing gum
12
gum
9
chewing gums
8
including changes
8
changes occurring
8
nnls analysis
8
sodium carbonate
8
raman
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!