The development of high-capacity anode materials is crucial for sodium-ion batteries. Alloy-type anode materials have attracted tremendous attention due to their high theoretical capacities. Nonetheless, the realizations of high capacity and remarkable cycling stability are actually hindered by the sluggish reaction kinetics of sodium storage. Here, we report a binary metal sulfides CoS@SnS heterostructure confined in carbon microspheres (denoted as (CoSn)S/C) through a facile hydrothermal reaction combined with annealing treatment. The (CoSn)S/C with micro/nanostructure can shorten ion diffusion length and increase mechanical strength of electrode. Besides, the heterogeneous interface between CoS and SnS can improve the inherent conductivity and favor the rapid transfer of Na. Benefitting from these advantages, (CoSn)S/C composite exhibits a high reversible capacity of 463 mAh g and superior durability (368 mAh g at 2 A g after 1000 cycles). Notably, the assembled NaV(PO)//(CoSn)S/C full cell delivers a reversible capacity of 386 mAh g at 0.2 A g, proving that the (CoSn)S/C is a promising anode material for sodium-ion batteries. The density functional theory (DFT) calculations unveil the mechanism and significance of the constructed CoS@SnS heterostructure for the sodium storage at atomic level. This work provides an important reference for in-depth understanding of reaction kinetics of bimetallic sulfides heterostructure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.12.021 | DOI Listing |
Small
January 2025
Materials Genome Institute, Shanghai University, Shanghai, 200444, China.
The local structure plays a crucial role in oxygen redox reactions, which boosts the capacity of layered oxide cathodes for sodium-ion batteries. While studies on local structural ordering have primarily focused on the intra-layer ordering, there has been limited research on the inter-layer stacking for the layered cathode materials for sodium-ion batteries. In this work, the impact of the intra-layer and inter-layer local structural regulation on anionic kinetics and the structure stability are explored through experimental analysis and theoretical calculations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China.
The NASICON-type NaV(PO) (NVP) is recognized as a potential cathode material for Na-ion batteries (SIBs). Nevertheless, its inherent small electronic conductivity induces limited cycling stability and rate performance. Carbon coating, particularly N-doped carbon, has been identified as an effective strategy to address these challenges.
View Article and Find Full Text PDFSmall Methods
January 2025
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543, Republic of Korea.
The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.
View Article and Find Full Text PDFAdv Mater
January 2025
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
NaV(PO), based on multi-electron reactions between V/V/V, is a promising cathode material for SIBs. However, its practical application is hampered by the inferior conductivity, large barrier of V/V, and stepwise phase transition. Herein, these issues are addressed by constructing a medium-entropy material (NaVTiAlCrMnNi(PO), ME-NVP) with strong ME─O bond and highly occupied Na2 sites.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 Jiangsu, PR China. Electronic address:
The Mn-based Prussian blue analogs (PBAs) have garnered significant attention due to their high specific capacity, stemming from the unique multi-electron reactions with Na. However, the structural instability caused by multi-ion insertion impacts the cycle life, thus limiting their further application in aqueous sodium-ion batteries (ASIBs). To address this issue, this work employed an in situ epitaxial solvent deposition method to homogeneously grow Ni hexacyanoferrate (NiHCF) on the surface of MnPBA, which can effectively overcome the de-intercalation instability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!