Glyphosate damages blood-testis barrier via NOX1-triggered oxidative stress in rats: Long-term exposure as a potential risk for male reproductive health.

Environ Int

College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China. Electronic address:

Published: January 2022

Blood-testis barrier (BTB) creates a privileged niche indispensable for spermatogenesis. Glyphosate (GLY), the most commonly used herbicide worldwide, has been reported to decrease sperm quality. However, whether and how GLY destroys the BTB to affect sperm quality remains to be elucidated. Herein, this study was designed to investigate the influence of GLY on the BTB in vivo and in vitro experiments. The results showed that male rats exposed to GLY for 4 months exhibited a decrease in sperm quality and quantity, accompanied by BTB integrity disruption and testicular oxidative stress. Additionally, GLY-induced reactive oxygen species (ROS) contributed to the downregulation of BTB-related proteins in primary Sertoli cells (SCs). Intriguingly, we identified a marked upregulation of oxidative stress-related gene NOX1 in GLY-exposed testis based on transcriptome analysis. NOX1 knockdown blocked the GLY-induced oxidative stress, as well as prevented BTB-related protein decrease in SCs. Furthermore, the estrogen receptor (ER)-α was significantly upregulated in vivo and in vitro models. An ER-α inhibitor decreased the expression levels of both ER-α and NOX1. Mechanistically, GLY directly interacted with ER-α at the site of Pro39 and Lys401 to promote ER-α activation, which boosted NOX1 expression to trigger ROS accumulation. Collectively, these results demonstrate that long-term GLY exposure adversely affects BTB integrity, which disrupts spermatogenesis via activation of ER-α/NOX1 axis. This study presents a better understanding of the risk of long-term GLY exposure to male fertility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2021.107038DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
sperm quality
12
blood-testis barrier
8
decrease sperm
8
vivo vitro
8
btb integrity
8
long-term gly
8
gly exposure
8
gly
7
btb
5

Similar Publications

Enhancing Miscanthus floridulus remediation of soil cadmium using Beauveria bassiana FE14: Plant growth promotion and microbial interactions.

Ecotoxicol Environ Saf

January 2025

College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China. Electronic address:

Soil heavy metal pollution presents substantial risks to food security and human health. This study focused on the efficiency of plant growth-promoting fungus-Beauveria bassiana FE14 and Miscanthus floridulus on the synergistic remediation of soil Cd contamination. Results revealed that B.

View Article and Find Full Text PDF

Inducers of Autophagy and Cell Death: Focus on Copper Metabolism.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China. Electronic address:

Copper is an essential trace element in biological systems, playing a key role in various physiological functions, including redox reactions and energy metabolism. However, an imbalance in copper homeostasis can induce oxidative stress, mitochondrial dysfunction, and inhibition of the ubiquitin-proteasome system, ultimately leading to significant cytotoxicity and cell death. According to recent research, copper can bind to lipoylation sites on proteins involved in the tricarboxylic acid cycle, causing aggregation of lipoylated proteins, the loss of Fe-S cluster proteins, proteotoxic stress, and ultimately, cell death.

View Article and Find Full Text PDF

This study aimed to investigate the potential protective properties of a traditional Chinese medicine (TCM) herbal product, Siraitia grosvenorii granules (SGG) against PM2.5-induced lung injury, as well as their active constituents and underlying mechanisms. The chemical composition of SGG, such as wogonin (MOL000173), luteolin (MOL000006), nobiletin (MOL005828), naringenin (MOL004328), acacetin (MOL001689), were identified via ultra-high-performance liquid chromatography-Q Exactive (UHPLC-QE) Orbitrap/MS.

View Article and Find Full Text PDF

Objective: The oxidative balance score (OBS) has emerged as a novel marker for assessing oxidative stress status. This study aimed to investigate the association of OBS with systolic blood pressure (SBP), diastolic blood pressure (DBP), all-cause, and cardiovascular disease mortality in hypertensive patients.

Methods: We conducted an analysis of data from 7602 hypertensive patients from the National Health and Nutrition Examination Survey (NHANES) 2005-2018.

View Article and Find Full Text PDF

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!