A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrated self-forming dynamic membrane (SFDM) and membrane-aerated biofilm reactor (MABR) system enhanced single-stage autotrophic nitrogen removal. | LitMetric

Integrated self-forming dynamic membrane (SFDM) and membrane-aerated biofilm reactor (MABR) system enhanced single-stage autotrophic nitrogen removal.

Bioresour Technol

Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, PR China; Center for Environment and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium. Electronic address:

Published: February 2022

The membrane aerated biofilm reactor (MABR) is a novel bioreactor technology, facilitating single-stage autotrophic nitrogen removal. Two laboratory-scale MABRs equipped with non-woven fabrics were operated simultaneously without and with a self-forming dynamic membrane (SFDM) filtration module. After 87 days of operation (system start-up), the reactor incorporated with SFDM filtration showed better performance in terms of total nitrogen removal (>80%) and effluent suspended solid (less than1 mg/L) than the MABR in the up flow anaerobic sludge blanket (UASB) configuration (i.e., without SFDM). The incorporation of SFDM has the ability to retain more slow growing biomass (anammox) inside the reactor. Microbial characterization by 16S rRNA-based amplicon sequencing shows that the abundance and composition of microbial communities in two MABR systems were different, i.e., the genusRhodanobacterwas abundant in UASB-MABR, while Calorithrixwas dominant in SFDM-MABR. PCA-based statistical analysis demonstrated a positive association between reactor performance, membrane characteristics and microbial communities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.126554DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
12
self-forming dynamic
8
dynamic membrane
8
membrane sfdm
8
biofilm reactor
8
reactor mabr
8
single-stage autotrophic
8
autotrophic nitrogen
8
sfdm filtration
8
microbial communities
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!