Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The discovery of acrylamide in various carbohydrate-rich foods cooked at high temperatures has attracted public health concerns. This study aimed to elucidate the effects and mechanisms additional with acrylamide exposure on the luteal function in vivo during early- and mid-pregnancy. Mice were fed with different dosages of acrylamide (0, 10 and 50 mg/kg/day) by gavage from gestational days (GD) 3 to GD 8 or GD 13. The results indicated that acrylamide exposure significantly decreased levels of serum progesterone and estradiol, and the numbers and relative areas of ovarian corpora lutea. The expression levels of Hsd3b1, Cyp11a1 and Star mRNA markedly reduced in acrylamide-treated ovaries. Furthermore, acrylamide exposure obviously suppressed the activities of catalase and superoxide dismutase, but increased the levels of HO and malondialdehyde. Additionally, acrylamide treatment significantly inhibited luteal angiogenesis and induced the apoptosis of ovarian cells by up-regulation of P53 and Bax protein and down-regulation of Bcl-2 protein. Thus, our results showed that gestational exposure to acrylamide significantly inhibited luteal endocrine function via dysregulation of ovarian angiogenesis, oxidative stress and apoptosis in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2021.112766 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!