Calpain-10 (CAPN10) belongs to the calpain superfamily. Genetic polymorphisms of the CAPN10 gene are associated with susceptibility to develop type 2 diabetes mellitus. Although the role of CAPN10 in the pathophysiology of diabetes has been extensively investigated, its biochemical properties are largely unknown. In this report, we made the surprising discovery that CAPN10 cDNA transcripts are subject to cryptic splicing and unexpected protein products were expressed. The same set of splicing products was reproducibly detected in four types of cultured cells including the primary culture of mouse myoblast. At least, one of the products was identical to a natural splicing variant. Sequence analysis of the splicing potential of CAPN10 cDNA, together with mutagenesis studies, resulted in the identification of a powerful splicing acceptor site at the junction of the sequences encoded by exons 9 and 10. We successfully extended the analysis to create expression construct resistant to splicing for both human and mouse CAPN10. The construct allowed us to analyze two major CAPN10 isoforms and reveal their difference in substrate proteolysis and potential cell functions. These results demonstrate that proteins produced from cDNA do not necessarily reflect the original nucleotide sequence. We provide insight into the property of recombinantly expressed CAPN10 proteins in cultured cells circumventing unexpected protein products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2021.119188 | DOI Listing |
Sci Rep
January 2025
Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, Hubei, China.
Pembrolizumab plus Lenvatinib is regarded as a significant treatment option for advanced unresectable hepatocellular carcinoma (HCC). This study aims to meticulously monitor and identify adverse events (AEs) related to this combined therapy, enhance patient safety, and offer evidence-based recommendations for the appropriate use of these drugs. We gathered adverse drug reactions (ADRs)-related data from the FAERS database for HCC patients who received Pembrolizumab, both alone and in combination with Lenvatinib from the first quarter of 2014 to the fourth quarter of 2023.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Department of Biochemistry, University of Colorado, Boulder, CO, USA.
Cajal bodies are essential sites for the biogenesis of small nuclear and nucleolar ribonucleoproteins. In this issue, Courvan and Parker discuss new work from Neugebauer and colleagues (https://doi.org/10.
View Article and Find Full Text PDFNature
January 2025
Case Comprehensive Cancer Center and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
The oestrogen receptor (ER or ERα), a nuclear hormone receptor that drives most breast cancer, is commonly activated by phosphorylation at serine 118 within its intrinsically disordered N-terminal transactivation domain. Although this modification enables oestrogen-independent ER function, its mechanism has remained unclear despite ongoing clinical trials of kinase inhibitors targeting this region. By integration of small-angle X-ray scattering and nuclear magnetic resonance spectroscopy with functional studies, we show that serine 118 phosphorylation triggers an unexpected expansion of the disordered domain and disrupts specific hydrophobic clustering between two aromatic-rich regions.
View Article and Find Full Text PDFNat Commun
January 2025
DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
Human DNA licensing initiates replication fork assembly and DNA replication. This reaction promotes the loading of the hMCM2-7 complex on DNA, which represents the core of the replicative helicase that unwinds DNA during S-phase. Here, we report the reconstitution of human DNA licensing using purified proteins.
View Article and Find Full Text PDFExp Anim
January 2025
Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia.
Status epilepticus is linked to cognitive decline due to damage to the hippocampus, a key structure involved in cognition. The hippocampus's high vulnerability to epilepsy-related damage is the main reason for this impairment. Convulsive seizures, such as those observed in status epilepticus, can cause various hippocampal pathologies, including inflammation, abnormal neurogenesis, and neuronal death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!