Environmental fate of dibutylphthalate in agricultural plastics: Photodegradation, migration and ecotoxicological impact on soil.

Chemosphere

Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines; Prov. de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Electronic address:

Published: March 2022

Phthalic acid esters (PAEs) were determined in polyethylene covers used in horticultural production units located at Moreno and La Plata districts (Buenos Aires, Argentina), detecting 0.69-8.75 mg PAEs kg plastic in greenhouse and tunnel films. The PAEs found were diisobutylphthalate (DIBP), dibutylphthalate (DBP) and diethylhexylphthalate (DEHP). DBP was chosen as a model molecule to carry out the photochemical degradation studies that led to the formation of monobutylphthalate (MBP) and phthalic acid (PA). DBP, MBP and PA migration from plastic covers was studied, finding that while DBP and MBP moved to soil and atmosphere in short times (<48 h), PA remained in the agricultural covers. Further experiments with DBP were made to explore the effect on migration of temperature (20 °C, 50 °C), film thickness (25 μm, 100 μm) and plastic ageing by solarization, observing that temperature increase, film thickness reduction and ageing by solarization favored DBP migration to the environment. DBP and MBP impact on soil were evaluated by avoidance and reproduction tests using Eisenia andrei as bioindicator. Both compounds reduced cocoon viability decreasing the number of juveniles at the lowest concentration assayed (0.1 mg kg of soil). At higher DBP and MBP concentrations the reproductive parameters (number of total cocoons, hatchability and number of juveniles) also showed alterations compared with the controls. Carboxylesterases (CaE), cholinesterases (ChE) and glutathion-S-transferases (GST) activities were analyzed in E. andrei exposed to DBP; cholinesterases activities were reduced at 1 and 10 mg DBP kg soil, and glutathione S-transferases activities were increased at 10 mg DBP kg soil while no effect was observed on carboxylesterases activities. These results emphasize the need to continue studying the impact of PAEs and their photodegradation products on the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.133221DOI Listing

Publication Analysis

Top Keywords

phthalic acid
8
dbp mbp
8
environmental fate
4
fate dibutylphthalate
4
dibutylphthalate agricultural
4
agricultural plastics
4
plastics photodegradation
4
photodegradation migration
4
migration ecotoxicological
4
ecotoxicological impact
4

Similar Publications

Biodegradation of plasticizers by novel strains of bacteria isolated from plastic waste near Juhu Beach, Mumbai, India.

Sci Rep

December 2024

Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.

Phthalic acid esters are pivotal plasticizers in various applications, including cosmetics, packaging materials, and medical devices. They have garnered significant attention from the scientific community due to their persistence in ecosystems. The multifaceted aspects of PAEs, encompassing leaching, transformation, and toxicity, underscore their prominence as primary components of anthropogenic waste.

View Article and Find Full Text PDF

Pore-Controllable Synthesis of Phthalic Acid-Derived Hierarchical Activated Carbon for Dilute CO Capture.

Inorg Chem

December 2024

Textile Pollution Controlling Engineering Center of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.

Carbon capture and storage (CCS) from dilute sources is an important strategy for stabilizing the concentration of atmospheric carbon dioxide and global temperature. However, the adsorption process is extremely challenging due to the sluggish diffusion rate of dilute CO. Herein, -phthalic acid (PTA)-derived hierarchical porous activated carbon (PTA-C) with abundant micro- and mesopores was successfully prepared for dilute CO (2 vol %) capture at ambient conditions.

View Article and Find Full Text PDF

Background: Phthalates, widely used as plasticizers, are pervasive environmental contaminants and endocrine disruptors. Their potential role in overactive bladder (OAB) pathogenesis is underexplored, necessitating further investigation into their impact on OAB using large-scale epidemiological data.

Methods: This study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2011 to 2018.

View Article and Find Full Text PDF

Phthalates (PAEs) are endocrine-disrupting chemicals that are widely present in everyday life and enter the human body through various pathways. The release of PAEs into the environment through pathways that include leaching, evaporation, abrasion, and the use of personal care products exposes humans to PAEs via ingestion, inhalation, and dermal absorption. Pregnant women, as a particularly vulnerable population, risk adverse newborn growth and development when exposed to PAEs.

View Article and Find Full Text PDF

This study introduces a green approach to sample preparation by applying natural deep eutectic solvents (NADES) to determine phthalates in carbonated soft drinks using high-performance liquid chromatography with diode array detector (HPLC-DAD). The method employs hollow fiber-microporous membrane liquid-liquid microextraction combined with a 96-well plate system, utilizing fatty-acid-based DES in the pores of the membranes. This methodology substantially reduces the use of organic solvents, and its efficiency is comparable to or better than conventional methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!