Collaborative intelligence for intensive care units.

Crit Care

Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore, 119228, Singapore.

Published: December 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669401PMC
http://dx.doi.org/10.1186/s13054-021-03852-7DOI Listing

Publication Analysis

Top Keywords

collaborative intelligence
4
intelligence intensive
4
intensive care
4
care units
4
collaborative
1
intensive
1
care
1
units
1

Similar Publications

AI decision support systems can assist clinicians in planning adaptive treatment strategies that can dynamically react to individuals' cancer progression for effective personalized care. However, AI's imperfections can lead to suboptimal therapeutics if clinicians over or under rely on AI. To investigate such collaborative decision-making process, we conducted a Human-AI interaction study on response-adaptive radiotherapy for non-small cell lung cancer and hepatocellular carcinoma.

View Article and Find Full Text PDF

Objectives: This article aims to evaluate the use and effects of an artificial intelligence system supporting a critical diagnostic task during radiology resident training, addressing a research gap in this field.

Materials And Methods: We involved eight residents evaluating 150 CXRs in three scenarios: no AI, on-demand AI, and integrated-AI. The considered task was the assessment of a multi-regional severity score of lung compromise in patients affected by COVID-19.

View Article and Find Full Text PDF

Generative AI as a tool to accelerate the field of ecology.

Nat Ecol Evol

January 2025

Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA.

The emergence of generative artificial intelligence (AI) models specializing in the generation of new data with the statistical patterns and properties of the data upon which the models were trained has profoundly influenced a range of academic disciplines, industry and public discourse. Combined with the vast amounts of diverse data now available to ecologists, from genetic sequences to remotely sensed animal tracks, generative AI presents enormous potential applications within ecology. Here we draw upon a range of fields to discuss unique potential applications in which generative AI could accelerate the field of ecology, including augmenting data-scarce datasets, extending observations of ecological patterns and increasing the accessibility of ecological data.

View Article and Find Full Text PDF

Background: Artificial intelligence (AI) has already revolutionized the analysis of image, text, and tabular data, bringing significant advances across many medical sectors. Now, by combining with wearable inertial measurement units (IMUs), AI could transform health care again by opening new opportunities in patient care and medical research.

Objective: This systematic review aims to evaluate the integration of AI models with wearable IMUs in health care, identifying current applications, challenges, and future opportunities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!