A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mesh size control in forming an Ag/AgO nano-network structure for transparent conducting application. | LitMetric

Mesh size control in forming an Ag/AgO nano-network structure for transparent conducting application.

Nanotechnology

Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.

Published: January 2022

The variation behaviors of the morphology, transmission, and sheet resistance of the surface Ag/AgO nano-network (NNW) structures fabricated under different illumination conditions and with different Ag deposition thicknesses and thermal annealing temperatures in forming initial Ag nanoparticles (NPs) are studied. Generally, an NNW structure with a smaller mesh size or a denser branch distribution has a lower transmission and a lower sheet resistance level. Under the fabrication condition of a broader illumination spectrum, a lower thermal annealing temperature, or a thicker Ag deposition, we can obtain an NNW structure of a smaller mesh size. The mesh size of an NNW structure is basically controlled by the seed density of Brownian tree (BT) at the beginning of light illumination. A BT seed can be formed through a stronger local localized surface plasmon resonance for accelerating Ag oxidation in a certain region. Once an Ag/AgO BT seed is formed, the surrounding Ag NPs are reorganized to form the branches of a BT. Multiple BTs are connected to form a large-area NNW structure, which can serve as a transparent conductor. Under the fabrication conditions of a broader illumination spectrum, 3 nm Ag deposition, and 100 °C thermal annealing, we can implement an NNW structure to achieve ∼1.15m in mesh size, ∼90 Ω sqin sheet resistance, and 93%-77% in transmittance within the wavelength range between 370 and 700 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac4305DOI Listing

Publication Analysis

Top Keywords

mesh size
20
nnw structure
20
sheet resistance
12
thermal annealing
12
ag/ago nano-network
8
structure smaller
8
smaller mesh
8
broader illumination
8
illumination spectrum
8
seed formed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!