Ultrafast Intersystem Crossing in Xanthone from Wavepacket Dynamics.

J Am Chem Soc

Aix-Marseille Univ, CNRS, ICR, Marseille 13 397, France.

Published: December 2021

Most aromatic ketones containing first-row elements undergo unexpectedly fast intersystem crossing in a few tens of picoseconds and a quantum yield close to unity. Among them, xanthone (9-xanthen-9-one) possesses one of the fastest singlet-triplet rates of only ∼1.5 ps. The exact mechanism of this unusually fast transition is still under debate. Here, we perform wavepacket dynamics of the photochemistry of xanthone in the gas phase and in polar solvents. We show that xanthone follows El-Sayed's rule for intersystem crossing. From the second singlet excited state, the mechanism is sequential: (i) an internal conversion between singlets ππ* → nπ* (85 fs), (ii) an intersystem crossing nπ* → ππ* (2.0 ps), and (iii) an internal conversion between triplets ππ* → nπ* (602 fs). Each transfer finds its origin in a barrierless access to electronic state intersections. These intersections are close to minimum energy structures, allowing for efficient transitions from the initial singlet state to the triplets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c07039DOI Listing

Publication Analysis

Top Keywords

intersystem crossing
16
wavepacket dynamics
8
internal conversion
8
ππ* →
8
→ nπ*
8
ultrafast intersystem
4
crossing
4
xanthone
4
crossing xanthone
4
xanthone wavepacket
4

Similar Publications

Hot-exciton materials, among all kinds of organic light-emitting diode (OLED) emitters, have better exciton utilization efficiency and efficiency roll-off, making them possible for their practical applications. We studied the photophysical properties of a few hot-exciton molecules based on an anthracene core unit to efficiently harvest all triplet excitons to the lowest excited singlet state. The conversion of triplet exciton to singlet exciton utilizing hRISC can be enhanced due to the 1ππ*←3nπ* transition channel.

View Article and Find Full Text PDF

Enhancement of photoinduced reactive oxygen species generation in open-cage fullerenes.

Chem Sci

December 2024

Institut de Quimica Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona M. Aurèlia Capmany, 69 17003 Girona Catalonia Spain

Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields.

View Article and Find Full Text PDF

Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.

View Article and Find Full Text PDF

Carbonyl complexes of metals with an α-diimine ligand exhibit both emission and ligand-selective photodissociation from MLCT states. Studying this photodissociative mechanism is challenging for experimental approaches due to an ultrafast femtosecond timescale and spectral overlap of multiple photoproducts. The photochemistry of a prototypical system is investigated with non-adiabatic dynamic simulations.

View Article and Find Full Text PDF

Visible-light absorbing metal-free organic dyes are of increasing demand for various optoelectronic applications because of their great structure-function tunability through chemical means. Several dyes also show huge potential in triplet photosensitization, generating reactive singlet oxygen. Understanding the structure-property relationships of many well-known fluorescein dyes is of paramount importance in designing next-generation energy efficient dyes, which is currently limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!