A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MEF2D Participates in Microglia-Mediated Neuroprotection in Cerebral Ischemia-Reperfusion Rats. | LitMetric

Objective: Microglial activation is a vital process in the neuroinflammatory response induced by I/R injury. It has been reported that myocyte enhancer factor (MEF)2D expression in activated microglia is associated with microglia-induced inflammatory responses and plays an important role in neuronal survival. This research aimed to investigate the role and mechanism of MEF2D in microglial activation and neuroinflammation in cerebral I/R in vitro and in vivo.

Methods: A cerebral I/R model was established. In vitro, neuronal, or microglial cells were exposed to oxygen-glucose deprivation and reoxygenation to mimic I/R. MEF2D overexpression was induced, and siRNA was administered in vitro and in vivo. Microglial polarization; MEF2D, nuclear transcription factor (NF)-κb, TLR4, and cytokine levels; neuronal injury; mitochondrial function; brain injury and cognitive function were detected in the different groups in vitro and in vivo.

Results: We found that oxygen-glucose deprivation increased MEF2D expression in a time-dependent manner in BV2 cells and primary microglia. MEF2D overexpression inhibited microglial activation, the expression of NF-κb and TLR, cytokine levels, and neuronal injury in microglia exposed to oxygen-glucose deprivation and reoxygenation. In the middle cerebral artery occlusion model, microglial activation, the neuroinflammatory response, mitochondrial dysfunction, brain injury, and cognitive function were improved by MEF2D overexpression and aggravated by MEF2D siRNA treatment.

Conclusion: These results indicate that MEF2D is a necessary molecule for neuroinflammation regulation and neuronal injury in cerebral ischemia.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0000000000001844DOI Listing

Publication Analysis

Top Keywords

microglial activation
16
oxygen-glucose deprivation
12
mef2d overexpression
12
neuronal injury
12
mef2d
10
neuroinflammatory response
8
mef2d expression
8
cerebral i/r
8
exposed oxygen-glucose
8
deprivation reoxygenation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!