Here, we study organogels prepared thanks to a new organogelator, the -oleyldiamide molecule, which shows a remarkable propensity to gelify a large scope of solvents, from aprotic to high protic solvents. The solvent plays a key role in the formation and stability of supramolecular self-assemblies. However, the understanding and the control of its effects can be complex as many parameters are involved. This study aims to understand the effect of solvent on the structures of organogels and on their final mechanical properties. Five solvent classes have been selected ranking from low protic to high protic, according to the Hansen H-bond parameter δ. The solvent proticity appears to be one of the main parameters that affect the organogel internal structure and therefore the final rheological properties. For a given organogelator fraction, the terminal elastic modulus measured by oscillatory rheology is observed to increase significantly with the Hansen H-bond solvent parameter δ. Materials of different mechanical properties are then shown to display various structures, which are investigated thanks to cryo-SEM. Besides, wide-angle X-ray scattering (WAXS) has been used to probe the gelator organization at the molecular scale with regard to the solvent nature, to understand the supramolecular self-assembly of this promising molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c02743 | DOI Listing |
J Phys Chem B
December 2024
Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.
As a predictive tool, quantum chemical calculations can be used to design protic ionic liquids (PILs) and predict the result. By adding anionic negative potential sites, two dual-functional PILs diethylenetriamine-barbituric acid [CHN][CHNO] and diethylenetriamine-ethylenolactonium [CHN][CHNO] were designed. The simulation results indicated that multisite absorption of anions and cations resulted in an expected absorption ratio exceeding 3:1 (mol CO:mol ILs).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
This study presents the synthesis of a transparent, flexible gel polymer electrolyte (GPE) based on the protic ionic liquid BMImHSO and on polyvinyl alcohol (PVA) through solution casting and electrochemical evaluation in a 2.5 V symmetrical C/C electrical double-layer solid-state capacitor (EDLC). The freestanding GPE film exhibits high thermal stability (>300 °C), wide electrochemical windows (>2.
View Article and Find Full Text PDFChembiochem
November 2024
Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India.
Certain volatile organic compounds (VOCs), such as formaldehyde, acetone, and ethanol, are overexpressed in some terminal diseases like cancer, diabetes, Alzheimer's, etc. Therefore, high-precision detection and quantification of VOCs is imperative for early diagnosis of such detrimental diseases. Non-invasive and accurate fluorescence-based detection of such analytes has garnered widespread attention.
View Article and Find Full Text PDFACS Macro Lett
December 2024
Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea.
Langmuir
December 2024
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
The preparation of high-quality highly oriented metal-organic framework (MOF) thin films is desirable for developing advanced functional devices. However, the pathways for controlling the oriented growth of MOFs are largely unknown, and determining their microcosmic evolution at the complex solid-liquid interface remains a challenge. Herein, we investigate the critical early growth stage of typical HKUST-1 on the COOH-functionalized Au substrate utilizing a combination of in situ surface-enhanced infrared spectroscopy, X-ray photoelectron spectroscopy, and photoinduced force microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!